DYT/Tool/OpenSceneGraph-3.6.5/include/Imath/ImathEuler.h

1038 lines
26 KiB
C
Raw Permalink Normal View History

2024-12-24 23:49:36 +00:00
//
// SPDX-License-Identifier: BSD-3-Clause
// Copyright Contributors to the OpenEXR Project.
//
//
// Euler angle representation of rotation/orientation
//
#ifndef INCLUDED_IMATHEULER_H
#define INCLUDED_IMATHEULER_H
#include "ImathExport.h"
#include "ImathNamespace.h"
#include "ImathMath.h"
#include "ImathMatrix.h"
#include "ImathQuat.h"
#include "ImathVec.h"
#include <iostream>
IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
// Disable MS VC++ warnings about conversion from double to float
# pragma warning(push)
# pragma warning(disable : 4244)
#endif
///
/// Template class `Euler<T>`
///
/// The Euler class represents euler angle orientations. The class
/// inherits from Vec3 to it can be freely cast. The additional
/// information is the euler priorities rep. This class is
/// essentially a rip off of Ken Shoemake's GemsIV code. It has
/// been modified minimally to make it more understandable, but
/// hardly enough to make it easy to grok completely.
///
/// There are 24 possible combonations of Euler angle
/// representations of which 12 are common in CG and you will
/// probably only use 6 of these which in this scheme are the
/// non-relative-non-repeating types.
///
/// The representations can be partitioned according to two
/// criteria:
///
/// 1) Are the angles measured relative to a set of fixed axis
/// or relative to each other (the latter being what happens
/// when rotation matrices are multiplied together and is
/// almost ubiquitous in the cg community)
///
/// 2) Is one of the rotations repeated (ala XYX rotation)
///
/// When you construct a given representation from scratch you
/// must order the angles according to their priorities. So, the
/// easiest is a softimage or aerospace (yaw/pitch/roll) ordering
/// of ZYX.
///
/// float x_rot = 1;
/// float y_rot = 2;
/// float z_rot = 3;
///
/// Eulerf angles(z_rot, y_rot, x_rot, Eulerf::ZYX);
///
/// or:
///
/// Eulerf angles( V3f(z_rot,y_rot,z_rot), Eulerf::ZYX );
///
///
/// If instead, the order was YXZ for instance you would have to
/// do this:
///
/// float x_rot = 1;
/// float y_rot = 2;
/// float z_rot = 3;
///
/// Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ);
///
/// or:
///
///
/// Eulerf angles( V3f(y_rot,x_rot,z_rot), Eulerf::YXZ );
///
/// Notice how the order you put the angles into the three slots
/// should correspond to the enum (YXZ) ordering. The input angle
/// vector is called the "ijk" vector -- not an "xyz" vector. The
/// ijk vector order is the same as the enum. If you treat the
/// Euler as a Vec3 (which it inherts from) you will find the
/// angles are ordered in the same way, i.e.:
///
/// V3f v = angles;
/// v.x == y_rot, v.y == x_rot, v.z == z_rot
///
/// If you just want the x, y, and z angles stored in a vector in
/// that order, you can do this:
///
/// V3f v = angles.toXYZVector()
/// v.x == x_rot, v.y == y_rot, v.z == z_rot
///
/// If you want to set the Euler with an XYZVector use the
/// optional layout argument:
///
/// Eulerf angles(x_rot, y_rot, z_rot, Eulerf::YXZ, Eulerf::XYZLayout);
///
/// This is the same as:
///
/// Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ);
///
/// Note that this won't do anything intelligent if you have a
/// repeated axis in the euler angles (e.g. XYX)
///
/// If you need to use the "relative" versions of these, you will
/// need to use the "r" enums.
///
/// The units of the rotation angles are assumed to be radians.
///
template <class T> class IMATH_EXPORT_TEMPLATE_TYPE Euler : public Vec3<T>
{
public:
using Vec3<T>::x;
using Vec3<T>::y;
using Vec3<T>::z;
///
/// All 24 possible orderings
///
enum IMATH_EXPORT_ENUM Order
{
XYZ = 0x0101, // "usual" orderings
XZY = 0x0001,
YZX = 0x1101,
YXZ = 0x1001,
ZXY = 0x2101,
ZYX = 0x2001,
XZX = 0x0011, // first axis repeated
XYX = 0x0111,
YXY = 0x1011,
YZY = 0x1111,
ZYZ = 0x2011,
ZXZ = 0x2111,
XYZr = 0x2000, // relative orderings -- not common
XZYr = 0x2100,
YZXr = 0x1000,
YXZr = 0x1100,
ZXYr = 0x0000,
ZYXr = 0x0100,
XZXr = 0x2110, // relative first axis repeated
XYXr = 0x2010,
YXYr = 0x1110,
YZYr = 0x1010,
ZYZr = 0x0110,
ZXZr = 0x0010,
// ||||
// VVVV
// ABCD
// Legend:
// A -> Initial Axis (0==x, 1==y, 2==z)
// B -> Parity Even (1==true)
// C -> Initial Repeated (1==true)
// D -> Frame Static (1==true)
//
Legal = XYZ | XZY | YZX | YXZ | ZXY | ZYX | XZX | XYX | YXY | YZY | ZYZ | ZXZ | XYZr |
XZYr | YZXr | YXZr | ZXYr | ZYXr | XZXr | XYXr | YXYr | YZYr | ZYZr | ZXZr,
Min = 0x0000,
Max = 0x2111,
Default = XYZ
};
///
/// Axes
///
enum IMATH_EXPORT_ENUM Axis
{
X = 0,
Y = 1,
Z = 2
};
///
/// Layout
///
enum IMATH_EXPORT_ENUM InputLayout
{
XYZLayout,
IJKLayout
};
/// @{
/// @name Constructors
///
/// All default to `ZYX` non-relative (ala Softimage 3D/Maya),
/// where there is no argument to specify it.
///
/// The Euler-from-matrix constructors assume that the matrix does
/// not include shear or non-uniform scaling, but the constructors
/// do not examine the matrix to verify this assumption. If necessary,
/// you can adjust the matrix by calling the removeScalingAndShear()
/// function, defined in ImathMatrixAlgo.h.
/// No initialization by default
IMATH_HOSTDEVICE constexpr Euler() IMATH_NOEXCEPT;
/// Copy constructor
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Euler (const Euler&) IMATH_NOEXCEPT;
/// Construct from given Order
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Euler (Order p) IMATH_NOEXCEPT;
/// Construct from vector, order, layout
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Euler (const Vec3<T>& v,
Order o = Default,
InputLayout l = IJKLayout) IMATH_NOEXCEPT;
/// Construct from explicit axes, order, layout
IMATH_HOSTDEVICE IMATH_CONSTEXPR14
Euler (T i, T j, T k, Order o = Default, InputLayout l = IJKLayout) IMATH_NOEXCEPT;
/// Copy constructor with new Order
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Euler (const Euler<T>& euler, Order newp) IMATH_NOEXCEPT;
/// Construct from Matrix33
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Euler (const Matrix33<T>&, Order o = Default) IMATH_NOEXCEPT;
/// Construct from Matrix44
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Euler (const Matrix44<T>&, Order o = Default) IMATH_NOEXCEPT;
/// Destructor
~Euler () = default;
/// @}
/// @{
/// @name Query
/// Return whether the given value is a legal Order
IMATH_HOSTDEVICE constexpr static bool legal (Order) IMATH_NOEXCEPT;
/// Return the order
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Order order() const IMATH_NOEXCEPT;
/// Return frameStatic
IMATH_HOSTDEVICE constexpr bool frameStatic() const { return _frameStatic; }
/// Return intialRepeated
IMATH_HOSTDEVICE constexpr bool initialRepeated() const { return _initialRepeated; }
/// Return partityEven
IMATH_HOSTDEVICE constexpr bool parityEven() const { return _parityEven; }
/// Return initialAxis
IMATH_HOSTDEVICE constexpr Axis initialAxis() const { return _initialAxis; }
/// Unpack angles from ijk form
IMATH_HOSTDEVICE void angleOrder (int& i, int& j, int& k) const IMATH_NOEXCEPT;
/// Determine mapping from xyz to ijk (reshuffle the xyz to match the order)
IMATH_HOSTDEVICE void angleMapping (int& i, int& j, int& k) const IMATH_NOEXCEPT;
/// @}
/// @{
/// @name Set Value
/// Set the order. This does NOT convert the angles, but it
/// does reorder the input vector.
IMATH_HOSTDEVICE void setOrder (Order) IMATH_NOEXCEPT;
/// Set the euler value: set the first angle to `v[0]`, the second to
/// `v[1]`, the third to `v[2]`.
IMATH_HOSTDEVICE void setXYZVector (const Vec3<T>&) IMATH_NOEXCEPT;
/// Set the value.
IMATH_HOSTDEVICE void set (Axis initial, bool relative, bool parityEven, bool firstRepeats) IMATH_NOEXCEPT;
/// @}
/// @{
/// @name Assignments and Conversions
///
/// Assignment
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Euler<T>& operator= (const Euler<T>&) IMATH_NOEXCEPT;
/// Assignment
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Euler<T>& operator= (const Vec3<T>&) IMATH_NOEXCEPT;
/// Assign from Matrix33, assumed to be affine
IMATH_HOSTDEVICE void extract (const Matrix33<T>&) IMATH_NOEXCEPT;
/// Assign from Matrix44, assumed to be affine
IMATH_HOSTDEVICE void extract (const Matrix44<T>&) IMATH_NOEXCEPT;
/// Assign from Quaternion
IMATH_HOSTDEVICE void extract (const Quat<T>&) IMATH_NOEXCEPT;
/// Convert to Matrix33
IMATH_HOSTDEVICE Matrix33<T> toMatrix33() const IMATH_NOEXCEPT;
/// Convert to Matrix44
IMATH_HOSTDEVICE Matrix44<T> toMatrix44() const IMATH_NOEXCEPT;
/// Convert to Quat
IMATH_HOSTDEVICE Quat<T> toQuat() const IMATH_NOEXCEPT;
/// Reorder the angles so that the X rotation comes first,
/// followed by the Y and Z in cases like XYX ordering, the
/// repeated angle will be in the "z" component
IMATH_HOSTDEVICE Vec3<T> toXYZVector() const IMATH_NOEXCEPT;
/// @}
/// @{
/// @name Utility Methods
///
/// Utility methods for getting continuous rotations. None of these
/// methods change the orientation given by its inputs (or at least
/// that is the intent).
/// Convert an angle to its equivalent in [-PI, PI]
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 static float angleMod (T angle) IMATH_NOEXCEPT;
/// Adjust xyzRot so that its components differ from targetXyzRot by no more than +/-PI
IMATH_HOSTDEVICE static void simpleXYZRotation (Vec3<T>& xyzRot, const Vec3<T>& targetXyzRot) IMATH_NOEXCEPT;
/// Adjust xyzRot so that its components differ from targetXyzRot by as little as possible.
/// Note that xyz here really means ijk, because the order must be provided.
IMATH_HOSTDEVICE static void
nearestRotation (Vec3<T>& xyzRot, const Vec3<T>& targetXyzRot, Order order = XYZ) IMATH_NOEXCEPT;
/// Adjusts "this" Euler so that its components differ from target
/// by as little as possible. This method might not make sense for
/// Eulers with different order and it probably doesn't work for
/// repeated axis and relative orderings (TODO).
IMATH_HOSTDEVICE void makeNear (const Euler<T>& target) IMATH_NOEXCEPT;
/// @}
protected:
/// relative or static rotations
bool _frameStatic : 1;
/// init axis repeated as last
bool _initialRepeated : 1;
/// "parity of axis permutation"
bool _parityEven : 1;
#if defined _WIN32 || defined _WIN64
/// First axis of rotation
Axis _initialAxis;
#else
/// First axis of rotation
Axis _initialAxis : 2;
#endif
};
//
// Convenient typedefs
//
/// Euler of type float
typedef Euler<float> Eulerf;
/// Euler of type double
typedef Euler<double> Eulerd;
//
// Implementation
//
/// @cond Doxygen_Suppress
template <class T>
IMATH_HOSTDEVICE inline void
Euler<T>::angleOrder (int& i, int& j, int& k) const IMATH_NOEXCEPT
{
i = _initialAxis;
j = _parityEven ? (i + 1) % 3 : (i > 0 ? i - 1 : 2);
k = _parityEven ? (i > 0 ? i - 1 : 2) : (i + 1) % 3;
}
template <class T>
IMATH_HOSTDEVICE inline void
Euler<T>::angleMapping (int& i, int& j, int& k) const IMATH_NOEXCEPT
{
int m[3];
m[_initialAxis] = 0;
m[(_initialAxis + 1) % 3] = _parityEven ? 1 : 2;
m[(_initialAxis + 2) % 3] = _parityEven ? 2 : 1;
i = m[0];
j = m[1];
k = m[2];
}
template <class T>
IMATH_HOSTDEVICE inline void
Euler<T>::setXYZVector (const Vec3<T>& v) IMATH_NOEXCEPT
{
int i, j, k;
angleMapping (i, j, k);
(*this)[i] = v.x;
(*this)[j] = v.y;
(*this)[k] = v.z;
}
template <class T>
IMATH_HOSTDEVICE inline Vec3<T>
Euler<T>::toXYZVector() const IMATH_NOEXCEPT
{
int i, j, k;
angleMapping (i, j, k);
return Vec3<T> ((*this)[i], (*this)[j], (*this)[k]);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Euler<T>::Euler() IMATH_NOEXCEPT
: Vec3<T> (0, 0, 0),
_frameStatic (true),
_initialRepeated (false),
_parityEven (true),
_initialAxis (X)
{}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Euler<T>::Euler (typename Euler<T>::Order p) IMATH_NOEXCEPT
: Vec3<T> (0, 0, 0),
_frameStatic (true),
_initialRepeated (false),
_parityEven (true),
_initialAxis (X)
{
setOrder (p);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Euler<T>::Euler (const Vec3<T>& v,
typename Euler<T>::Order p,
typename Euler<T>::InputLayout l) IMATH_NOEXCEPT
{
setOrder (p);
if (l == XYZLayout)
setXYZVector (v);
else
{
x = v.x;
y = v.y;
z = v.z;
}
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Euler<T>::Euler (const Euler<T>& euler) IMATH_NOEXCEPT
{
operator= (euler);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Euler<T>::Euler (const Euler<T>& euler, Order p) IMATH_NOEXCEPT
{
setOrder (p);
Matrix33<T> M = euler.toMatrix33();
extract (M);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline
Euler<T>::Euler (T xi, T yi, T zi, typename Euler<T>::Order p,
typename Euler<T>::InputLayout l) IMATH_NOEXCEPT
{
setOrder (p);
if (l == XYZLayout)
setXYZVector (Vec3<T> (xi, yi, zi));
else
{
x = xi;
y = yi;
z = zi;
}
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Euler<T>::Euler (const Matrix33<T>& M, typename Euler::Order p) IMATH_NOEXCEPT
{
setOrder (p);
extract (M);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Euler<T>::Euler (const Matrix44<T>& M, typename Euler::Order p) IMATH_NOEXCEPT
{
setOrder (p);
extract (M);
}
template <class T>
IMATH_HOSTDEVICE inline void
Euler<T>::extract (const Quat<T>& q) IMATH_NOEXCEPT
{
extract (q.toMatrix33());
}
template <class T>
IMATH_HOSTDEVICE void
Euler<T>::extract (const Matrix33<T>& M) IMATH_NOEXCEPT
{
int i, j, k;
angleOrder (i, j, k);
if (_initialRepeated)
{
//
// Extract the first angle, x.
//
x = std::atan2 (M[j][i], M[k][i]);
//
// Remove the x rotation from M, so that the remaining
// rotation, N, is only around two axes, and gimbal lock
// cannot occur.
//
Vec3<T> r (0, 0, 0);
r[i] = (_parityEven ? -x : x);
Matrix44<T> N;
N.rotate (r);
N = N * Matrix44<T> (M[0][0],
M[0][1],
M[0][2],
0,
M[1][0],
M[1][1],
M[1][2],
0,
M[2][0],
M[2][1],
M[2][2],
0,
0,
0,
0,
1);
//
// Extract the other two angles, y and z, from N.
//
T sy = std::sqrt (N[j][i] * N[j][i] + N[k][i] * N[k][i]);
y = std::atan2 (sy, N[i][i]);
z = std::atan2 (N[j][k], N[j][j]);
}
else
{
//
// Extract the first angle, x.
//
x = std::atan2 (M[j][k], M[k][k]);
//
// Remove the x rotation from M, so that the remaining
// rotation, N, is only around two axes, and gimbal lock
// cannot occur.
//
Vec3<T> r (0, 0, 0);
r[i] = (_parityEven ? -x : x);
Matrix44<T> N;
N.rotate (r);
N = N * Matrix44<T> (M[0][0],
M[0][1],
M[0][2],
0,
M[1][0],
M[1][1],
M[1][2],
0,
M[2][0],
M[2][1],
M[2][2],
0,
0,
0,
0,
1);
//
// Extract the other two angles, y and z, from N.
//
T cy = std::sqrt (N[i][i] * N[i][i] + N[i][j] * N[i][j]);
y = std::atan2 (-N[i][k], cy);
z = std::atan2 (-N[j][i], N[j][j]);
}
if (!_parityEven)
*this *= -1;
if (!_frameStatic)
{
T t = x;
x = z;
z = t;
}
}
template <class T>
IMATH_HOSTDEVICE void
Euler<T>::extract (const Matrix44<T>& M) IMATH_NOEXCEPT
{
int i, j, k;
angleOrder (i, j, k);
if (_initialRepeated)
{
//
// Extract the first angle, x.
//
x = std::atan2 (M[j][i], M[k][i]);
//
// Remove the x rotation from M, so that the remaining
// rotation, N, is only around two axes, and gimbal lock
// cannot occur.
//
Vec3<T> r (0, 0, 0);
r[i] = (_parityEven ? -x : x);
Matrix44<T> N;
N.rotate (r);
N = N * M;
//
// Extract the other two angles, y and z, from N.
//
T sy = std::sqrt (N[j][i] * N[j][i] + N[k][i] * N[k][i]);
y = std::atan2 (sy, N[i][i]);
z = std::atan2 (N[j][k], N[j][j]);
}
else
{
//
// Extract the first angle, x.
//
x = std::atan2 (M[j][k], M[k][k]);
//
// Remove the x rotation from M, so that the remaining
// rotation, N, is only around two axes, and gimbal lock
// cannot occur.
//
Vec3<T> r (0, 0, 0);
r[i] = (_parityEven ? -x : x);
Matrix44<T> N;
N.rotate (r);
N = N * M;
//
// Extract the other two angles, y and z, from N.
//
T cy = std::sqrt (N[i][i] * N[i][i] + N[i][j] * N[i][j]);
y = std::atan2 (-N[i][k], cy);
z = std::atan2 (-N[j][i], N[j][j]);
}
if (!_parityEven)
*this *= -1;
if (!_frameStatic)
{
T t = x;
x = z;
z = t;
}
}
template <class T>
IMATH_HOSTDEVICE Matrix33<T>
Euler<T>::toMatrix33() const IMATH_NOEXCEPT
{
int i, j, k;
angleOrder (i, j, k);
Vec3<T> angles;
if (_frameStatic)
angles = (*this);
else
angles = Vec3<T> (z, y, x);
if (!_parityEven)
angles *= -1.0;
T ci = std::cos (angles.x);
T cj = std::cos (angles.y);
T ch = std::cos (angles.z);
T si = std::sin (angles.x);
T sj = std::sin (angles.y);
T sh = std::sin (angles.z);
T cc = ci * ch;
T cs = ci * sh;
T sc = si * ch;
T ss = si * sh;
Matrix33<T> M;
if (_initialRepeated)
{
M[i][i] = cj;
M[j][i] = sj * si;
M[k][i] = sj * ci;
M[i][j] = sj * sh;
M[j][j] = -cj * ss + cc;
M[k][j] = -cj * cs - sc;
M[i][k] = -sj * ch;
M[j][k] = cj * sc + cs;
M[k][k] = cj * cc - ss;
}
else
{
M[i][i] = cj * ch;
M[j][i] = sj * sc - cs;
M[k][i] = sj * cc + ss;
M[i][j] = cj * sh;
M[j][j] = sj * ss + cc;
M[k][j] = sj * cs - sc;
M[i][k] = -sj;
M[j][k] = cj * si;
M[k][k] = cj * ci;
}
return M;
}
template <class T>
IMATH_HOSTDEVICE Matrix44<T>
Euler<T>::toMatrix44() const IMATH_NOEXCEPT
{
int i, j, k;
angleOrder (i, j, k);
Vec3<T> angles;
if (_frameStatic)
angles = (*this);
else
angles = Vec3<T> (z, y, x);
if (!_parityEven)
angles *= -1.0;
T ci = std::cos (angles.x);
T cj = std::cos (angles.y);
T ch = std::cos (angles.z);
T si = std::sin (angles.x);
T sj = std::sin (angles.y);
T sh = std::sin (angles.z);
T cc = ci * ch;
T cs = ci * sh;
T sc = si * ch;
T ss = si * sh;
Matrix44<T> M;
if (_initialRepeated)
{
M[i][i] = cj;
M[j][i] = sj * si;
M[k][i] = sj * ci;
M[i][j] = sj * sh;
M[j][j] = -cj * ss + cc;
M[k][j] = -cj * cs - sc;
M[i][k] = -sj * ch;
M[j][k] = cj * sc + cs;
M[k][k] = cj * cc - ss;
}
else
{
M[i][i] = cj * ch;
M[j][i] = sj * sc - cs;
M[k][i] = sj * cc + ss;
M[i][j] = cj * sh;
M[j][j] = sj * ss + cc;
M[k][j] = sj * cs - sc;
M[i][k] = -sj;
M[j][k] = cj * si;
M[k][k] = cj * ci;
}
return M;
}
template <class T>
IMATH_HOSTDEVICE Quat<T>
Euler<T>::toQuat() const IMATH_NOEXCEPT
{
Vec3<T> angles;
int i, j, k;
angleOrder (i, j, k);
if (_frameStatic)
angles = (*this);
else
angles = Vec3<T> (z, y, x);
if (!_parityEven)
angles.y = -angles.y;
T ti = angles.x * 0.5;
T tj = angles.y * 0.5;
T th = angles.z * 0.5;
T ci = std::cos (ti);
T cj = std::cos (tj);
T ch = std::cos (th);
T si = std::sin (ti);
T sj = std::sin (tj);
T sh = std::sin (th);
T cc = ci * ch;
T cs = ci * sh;
T sc = si * ch;
T ss = si * sh;
T parity = _parityEven ? 1.0 : -1.0;
Quat<T> q;
Vec3<T> a;
if (_initialRepeated)
{
a[i] = cj * (cs + sc);
a[j] = sj * (cc + ss) * parity, // NOSONAR - suppress SonarCloud bug report.
a[k] = sj * (cs - sc);
q.r = cj * (cc - ss);
}
else
{
a[i] = cj * sc - sj * cs,
a[j] = (cj * ss + sj * cc) * parity, // NOSONAR - suppress SonarCloud bug report.
a[k] = cj * cs - sj * sc;
q.r = cj * cc + sj * ss;
}
q.v = a;
return q;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline bool
Euler<T>::legal (typename Euler<T>::Order order) IMATH_NOEXCEPT
{
return (order & ~Legal) ? false : true;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 typename Euler<T>::Order
Euler<T>::order() const IMATH_NOEXCEPT
{
int foo = (_initialAxis == Z ? 0x2000 : (_initialAxis == Y ? 0x1000 : 0));
if (_parityEven)
foo |= 0x0100;
if (_initialRepeated)
foo |= 0x0010;
if (_frameStatic)
foo++;
return (Order) foo;
}
template <class T>
IMATH_HOSTDEVICE inline void
Euler<T>::setOrder (typename Euler<T>::Order p) IMATH_NOEXCEPT
{
set (p & 0x2000 ? Z : (p & 0x1000 ? Y : X), // initial axis
!(p & 0x1), // static?
!!(p & 0x100), // permutation even?
!!(p & 0x10)); // initial repeats?
}
template <class T>
IMATH_HOSTDEVICE inline void
Euler<T>::set (typename Euler<T>::Axis axis, bool relative, bool parityEven, bool firstRepeats) IMATH_NOEXCEPT
{
_initialAxis = axis;
_frameStatic = !relative;
_parityEven = parityEven;
_initialRepeated = firstRepeats;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Euler<T>&
Euler<T>::operator= (const Euler<T>& euler) IMATH_NOEXCEPT
{
x = euler.x;
y = euler.y;
z = euler.z;
_initialAxis = euler._initialAxis;
_frameStatic = euler._frameStatic;
_parityEven = euler._parityEven;
_initialRepeated = euler._initialRepeated;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Euler<T>&
Euler<T>::operator= (const Vec3<T>& v) IMATH_NOEXCEPT
{
x = v.x;
y = v.y;
z = v.z;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline float
Euler<T>::angleMod (T angle) IMATH_NOEXCEPT
{
const T pi = static_cast<T> (M_PI);
angle = fmod (T (angle), T (2 * pi));
if (angle < -pi)
angle += 2 * pi;
if (angle > +pi)
angle -= 2 * pi;
return angle;
}
template <class T>
IMATH_HOSTDEVICE inline void
Euler<T>::simpleXYZRotation (Vec3<T>& xyzRot, const Vec3<T>& targetXyzRot) IMATH_NOEXCEPT
{
Vec3<T> d = xyzRot - targetXyzRot;
xyzRot[0] = targetXyzRot[0] + angleMod (d[0]);
xyzRot[1] = targetXyzRot[1] + angleMod (d[1]);
xyzRot[2] = targetXyzRot[2] + angleMod (d[2]);
}
template <class T>
IMATH_HOSTDEVICE void
Euler<T>::nearestRotation (Vec3<T>& xyzRot, const Vec3<T>& targetXyzRot, Order order) IMATH_NOEXCEPT
{
int i, j, k;
Euler<T> e (0, 0, 0, order);
e.angleOrder (i, j, k);
simpleXYZRotation (xyzRot, targetXyzRot);
Vec3<T> otherXyzRot;
otherXyzRot[i] = M_PI + xyzRot[i];
otherXyzRot[j] = M_PI - xyzRot[j];
otherXyzRot[k] = M_PI + xyzRot[k];
simpleXYZRotation (otherXyzRot, targetXyzRot);
Vec3<T> d = xyzRot - targetXyzRot;
Vec3<T> od = otherXyzRot - targetXyzRot;
T dMag = d.dot (d);
T odMag = od.dot (od);
if (odMag < dMag)
{
xyzRot = otherXyzRot;
}
}
template <class T>
IMATH_HOSTDEVICE void
Euler<T>::makeNear (const Euler<T>& target) IMATH_NOEXCEPT
{
Vec3<T> xyzRot = toXYZVector();
Vec3<T> targetXyz;
if (order() != target.order())
{
Euler<T> targetSameOrder = Euler<T> (target, order());
targetXyz = targetSameOrder.toXYZVector();
}
else
{
targetXyz = target.toXYZVector();
}
nearestRotation (xyzRot, targetXyz, order());
setXYZVector (xyzRot);
}
/// @endcond
/// Stream ouput, as "(x y z i j k)"
template <class T>
std::ostream&
operator<< (std::ostream& o, const Euler<T>& euler)
{
char a[3] = { 'X', 'Y', 'Z' };
const char* r = euler.frameStatic() ? "" : "r";
int i, j, k;
euler.angleOrder (i, j, k);
if (euler.initialRepeated())
k = i;
return o << "(" << euler.x << " " << euler.y << " " << euler.z << " " << a[i] << a[j] << a[k]
<< r << ")";
}
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
# pragma warning(pop)
#endif
IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
#endif // INCLUDED_IMATHEULER_H