DYT/Tool/OpenSceneGraph-3.6.5/include/Imath/ImathShear.h

690 lines
18 KiB
C
Raw Permalink Normal View History

2024-12-24 23:49:36 +00:00
//
// SPDX-License-Identifier: BSD-3-Clause
// Copyright Contributors to the OpenEXR Project.
//
//
// A representation of a shear transformation
//
#ifndef INCLUDED_IMATHSHEAR_H
#define INCLUDED_IMATHSHEAR_H
#include "ImathExport.h"
#include "ImathNamespace.h"
#include "ImathMath.h"
#include "ImathVec.h"
#include <iostream>
IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
///
/// Shear6 class template.
///
/// A shear matrix is technically defined as having a single nonzero
/// off-diagonal element; more generally, a shear transformation is
/// defined by those off-diagonal elements, so in 3D, that means there
/// are 6 possible elements/coefficients:
///
/// | X' | | 1 YX ZX 0 | | X |
/// | Y' | | XY 1 ZY 0 | | Y |
/// | Z' | = | XZ YZ 1 0 | = | Z |
/// | 1 | | 0 0 0 1 | | 1 |
///
/// X' = X + YX * Y + ZX * Z
/// Y' = YX * X + Y + ZY * Z
/// Z` = XZ * X + YZ * Y + Z
///
/// See
/// https://www.cs.drexel.edu/~david/Classes/CS430/Lectures/L-04_3DTransformations.6.pdf
///
/// Those variable elements correspond to the 6 values in a Shear6.
/// So, looking at those equations, "Shear YX", for example, means
/// that for any point transformed by that matrix, its X values will
/// have some of their Y values added. If you're talking
/// about "Axis A has values from Axis B added to it", there are 6
/// permutations for A and B (XY, XZ, YX, YZ, ZX, ZY).
///
/// Not that Maya has only three values, which represent the
/// lower/upper (depending on column/row major) triangle of the
/// matrix. Houdini is the same as Maya (see
/// https://www.sidefx.com/docs/houdini/props/obj.html) in this
/// respect.
///
/// There's another way to look at it. A general affine transformation
/// in 3D has 12 degrees of freedom - 12 "available" elements in the
/// 4x4 matrix since a single row/column must be (0,0,0,1). If you
/// add up the degrees of freedom from Maya:
///
/// - 3 translation
/// - 3 rotation
/// - 3 scale
/// - 3 shear
///
/// You obviously get the full 12. So technically, the Shear6 option
/// of having all 6 shear options is overkill; Imath/Shear6 has 15
/// values for a 12-degree-of-freedom transformation. This means that
/// any nonzero values in those last 3 shear coefficients can be
/// represented in those standard 12 degrees of freedom. Here's a
/// python example of how to do that:
///
///
/// >>> import imath
/// >>> M = imath.M44f()
/// >>> s = imath.V3f()
/// >>> h = imath.V3f()
/// >>> r = imath.V3f()
/// >>> t = imath.V3f()
/// # Use Shear.YX (index 3), which is an "extra" shear value
/// >>> M.setShear((0,0,0,1,0,0))
/// M44f((1, 1, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1))
/// >>> M.extractSHRT(s, h, r, t)
/// 1
/// >>> s
/// V3f(1.41421354, 0.707106769, 1)
/// >>> h
/// V3f(1, 0, 0)
/// >>> r
/// V3f(0, -0, 0.785398185)
/// >>> t
/// V3f(0, 0, 0)
///
/// That shows how to decompose a transform matrix with one of those
/// "extra" shear coefficients into those standard 12 degrees of
/// freedom. But it's not necessarily intuitive; in this case, a
/// single non-zero shear coefficient resulted in a transform that has
/// non-uniform scale, a single "standard" shear value, and some
/// rotation.
///
/// So, it would seem that any transform with those extra shear
/// values set could be translated into Maya to produce the exact same
/// transformation matrix; but doing this is probably pretty
/// undesirable, since the result would have some surprising values on
/// the other transformation attributes, despite being technically
/// correct.
///
/// This usage of "degrees of freedom" is a bit hand-wavey here;
/// having a total of 12 inputs into the construction of a standard
/// transformation matrix doesn't necessarily mean that the matrix has
/// 12 true degrees of freedom, but the standard
/// translation/rotation/scale/shear matrices have the right
/// construction to ensure that.
///
template <class T> class IMATH_EXPORT_TEMPLATE_TYPE Shear6
{
public:
/// @{
/// @name Direct access to members
T xy, xz, yz, yx, zx, zy;
/// @}
/// Element access
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 T& operator[] (int i);
/// Element access
IMATH_HOSTDEVICE constexpr const T& operator[] (int i) const;
/// @{
/// @name Constructors and Assignment
/// Initialize to 0
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6();
/// Initialize to the given XY, XZ, YZ values
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (T XY, T XZ, T YZ);
/// Initialize to the given XY, XZ, YZ values held in (v.x, v.y, v.z)
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (const Vec3<T>& v);
/// Initialize to the given XY, XZ, YZ values held in (v.x, v.y, v.z)
template <class S>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (const Vec3<S>& v);
/// Initialize to the given (XY XZ YZ YX ZX ZY) values
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (T XY,
T XZ,
T YZ,
T YX,
T ZX,
T ZY);
/// Copy constructor
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (const Shear6& h);
/// Construct from a Shear6 object of another base type
template <class S> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Shear6 (const Shear6<S>& h);
/// Assignment
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator= (const Shear6& h);
/// Assignment from vector
template <class S>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator= (const Vec3<S>& v);
/// Destructor
~Shear6() = default;
/// @}
/// @{
/// @name Compatibility with Sb
/// Set the value
template <class S> IMATH_HOSTDEVICE void setValue (S XY, S XZ, S YZ, S YX, S ZX, S ZY);
/// Set the value
template <class S> IMATH_HOSTDEVICE void setValue (const Shear6<S>& h);
/// Return the values
template <class S>
IMATH_HOSTDEVICE void getValue (S& XY, S& XZ, S& YZ, S& YX, S& ZX, S& ZY) const;
/// Return the value in `h`
template <class S> IMATH_HOSTDEVICE void getValue (Shear6<S>& h) const;
/// Return a raw pointer to the array of values
IMATH_HOSTDEVICE T* getValue();
/// Return a raw pointer to the array of values
IMATH_HOSTDEVICE const T* getValue() const;
/// @}
/// @{
/// @name Arithmetic and Comparison
/// Equality
template <class S> IMATH_HOSTDEVICE constexpr bool operator== (const Shear6<S>& h) const;
/// Inequality
template <class S> IMATH_HOSTDEVICE constexpr bool operator!= (const Shear6<S>& h) const;
/// Compare two shears and test if they are "approximately equal":
/// @return True if the coefficients of this and h are the same with
/// an absolute error of no more than e, i.e., for all i
/// abs (this[i] - h[i]) <= e
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 bool equalWithAbsError (const Shear6<T>& h, T e) const;
/// Compare two shears and test if they are "approximately equal":
/// @return True if the coefficients of this and h are the same with
/// a relative error of no more than e, i.e., for all i
/// abs (this[i] - h[i]) <= e * abs (this[i])
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 bool equalWithRelError (const Shear6<T>& h, T e) const;
/// Component-wise addition
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator+= (const Shear6& h);
/// Component-wise addition
IMATH_HOSTDEVICE constexpr Shear6 operator+ (const Shear6& h) const;
/// Component-wise subtraction
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator-= (const Shear6& h);
/// Component-wise subtraction
IMATH_HOSTDEVICE constexpr Shear6 operator- (const Shear6& h) const;
/// Component-wise multiplication by -1
IMATH_HOSTDEVICE constexpr Shear6 operator-() const;
/// Component-wise multiplication by -1
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& negate();
/// Component-wise multiplication
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator*= (const Shear6& h);
/// Scalar multiplication
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator*= (T a);
/// Component-wise multiplication
IMATH_HOSTDEVICE constexpr Shear6 operator* (const Shear6& h) const;
/// Scalar multiplication
IMATH_HOSTDEVICE constexpr Shear6 operator* (T a) const;
/// Component-wise division
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator/= (const Shear6& h);
/// Scalar division
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Shear6& operator/= (T a);
/// Component-wise division
IMATH_HOSTDEVICE constexpr Shear6 operator/ (const Shear6& h) const;
/// Scalar division
IMATH_HOSTDEVICE constexpr Shear6 operator/ (T a) const;
/// @}
/// @{
/// @name Numerical Limits
/// Largest possible negative value
IMATH_HOSTDEVICE constexpr static T baseTypeLowest() IMATH_NOEXCEPT { return std::numeric_limits<T>::lowest(); }
/// Largest possible positive value
IMATH_HOSTDEVICE constexpr static T baseTypeMax() IMATH_NOEXCEPT { return std::numeric_limits<T>::max(); }
/// Smallest possible positive value
IMATH_HOSTDEVICE constexpr static T baseTypeSmallest() IMATH_NOEXCEPT { return std::numeric_limits<T>::min(); }
/// Smallest possible e for which 1+e != 1
IMATH_HOSTDEVICE constexpr static T baseTypeEpsilon() IMATH_NOEXCEPT { return std::numeric_limits<T>::epsilon(); }
/// @}
/// Return the number of dimensions, i.e. 6
IMATH_HOSTDEVICE constexpr static unsigned int dimensions() { return 6; }
/// The base type: In templates that accept a parameter `V` (could
/// be a Color4), you can refer to `T` as `V::BaseType`
typedef T BaseType;
};
/// Stream output, as "(xy xz yz yx zx zy)"
template <class T> std::ostream& operator<< (std::ostream& s, const Shear6<T>& h);
/// Reverse multiplication: scalar * Shear6<T>
template <class S, class T>
IMATH_HOSTDEVICE constexpr Shear6<T> operator* (S a, const Shear6<T>& h);
/// 3D shear of type float
typedef Vec3<float> Shear3f;
/// 3D shear of type double
typedef Vec3<double> Shear3d;
/// Shear6 of type float
typedef Shear6<float> Shear6f;
/// Shear6 of type double
typedef Shear6<double> Shear6d;
//-----------------------
// Implementation of Shear6
//-----------------------
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline T&
Shear6<T>::operator[] (int i)
{
return (&xy)[i]; // NOSONAR - suppress SonarCloud bug report.
}
template <class T>
IMATH_HOSTDEVICE constexpr inline const T&
Shear6<T>::operator[] (int i) const
{
return (&xy)[i]; // NOSONAR - suppress SonarCloud bug report.
}
template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6()
{
xy = xz = yz = yx = zx = zy = 0;
}
template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (T XY, T XZ, T YZ)
{
xy = XY;
xz = XZ;
yz = YZ;
yx = 0;
zx = 0;
zy = 0;
}
template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (const Vec3<T>& v)
{
xy = v.x;
xz = v.y;
yz = v.z;
yx = 0;
zx = 0;
zy = 0;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (const Vec3<S>& v)
{
xy = T (v.x);
xz = T (v.y);
yz = T (v.z);
yx = 0;
zx = 0;
zy = 0;
}
template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (T XY, T XZ, T YZ, T YX, T ZX, T ZY)
{
xy = XY;
xz = XZ;
yz = YZ;
yx = YX;
zx = ZX;
zy = ZY;
}
template <class T> IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (const Shear6& h)
{
xy = h.xy;
xz = h.xz;
yz = h.yz;
yx = h.yx;
zx = h.zx;
zy = h.zy;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Shear6<T>::Shear6 (const Shear6<S>& h)
{
xy = T (h.xy);
xz = T (h.xz);
yz = T (h.yz);
yx = T (h.yx);
zx = T (h.zx);
zy = T (h.zy);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>&
Shear6<T>::operator= (const Shear6& h)
{
xy = h.xy;
xz = h.xz;
yz = h.yz;
yx = h.yx;
zx = h.zx;
zy = h.zy;
return *this;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>&
Shear6<T>::operator= (const Vec3<S>& v)
{
xy = T (v.x);
xz = T (v.y);
yz = T (v.z);
yx = 0;
zx = 0;
zy = 0;
return *this;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Shear6<T>::setValue (S XY, S XZ, S YZ, S YX, S ZX, S ZY)
{
xy = T (XY);
xz = T (XZ);
yz = T (YZ);
yx = T (YX);
zx = T (ZX);
zy = T (ZY);
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Shear6<T>::setValue (const Shear6<S>& h)
{
xy = T (h.xy);
xz = T (h.xz);
yz = T (h.yz);
yx = T (h.yx);
zx = T (h.zx);
zy = T (h.zy);
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Shear6<T>::getValue (S& XY, S& XZ, S& YZ, S& YX, S& ZX, S& ZY) const
{
XY = S (xy);
XZ = S (xz);
YZ = S (yz);
YX = S (yx);
ZX = S (zx);
ZY = S (zy);
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Shear6<T>::getValue (Shear6<S>& h) const
{
h.xy = S (xy);
h.xz = S (xz);
h.yz = S (yz);
h.yx = S (yx);
h.zx = S (zx);
h.zy = S (zy);
}
template <class T>
IMATH_HOSTDEVICE inline T*
Shear6<T>::getValue()
{
return (T*) &xy;
}
template <class T>
IMATH_HOSTDEVICE inline const T*
Shear6<T>::getValue() const
{
return (const T*) &xy;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE constexpr inline bool
Shear6<T>::operator== (const Shear6<S>& h) const
{
return xy == h.xy && xz == h.xz && yz == h.yz && yx == h.yx && zx == h.zx && zy == h.zy;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE constexpr inline bool
Shear6<T>::operator!= (const Shear6<S>& h) const
{
return xy != h.xy || xz != h.xz || yz != h.yz || yx != h.yx || zx != h.zx || zy != h.zy;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline bool
Shear6<T>::equalWithAbsError (const Shear6<T>& h, T e) const
{
for (int i = 0; i < 6; i++)
if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i], h[i], e))
return false;
return true;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline bool
Shear6<T>::equalWithRelError (const Shear6<T>& h, T e) const
{
for (int i = 0; i < 6; i++)
if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i], h[i], e))
return false;
return true;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>&
Shear6<T>::operator+= (const Shear6& h)
{
xy += h.xy;
xz += h.xz;
yz += h.yz;
yx += h.yx;
zx += h.zx;
zy += h.zy;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Shear6<T>
Shear6<T>::operator+ (const Shear6& h) const
{
return Shear6 (xy + h.xy, xz + h.xz, yz + h.yz, yx + h.yx, zx + h.zx, zy + h.zy);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>&
Shear6<T>::operator-= (const Shear6& h)
{
xy -= h.xy;
xz -= h.xz;
yz -= h.yz;
yx -= h.yx;
zx -= h.zx;
zy -= h.zy;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Shear6<T>
Shear6<T>::operator- (const Shear6& h) const
{
return Shear6 (xy - h.xy, xz - h.xz, yz - h.yz, yx - h.yx, zx - h.zx, zy - h.zy);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Shear6<T>
Shear6<T>::operator-() const
{
return Shear6 (-xy, -xz, -yz, -yx, -zx, -zy);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>&
Shear6<T>::negate()
{
xy = -xy;
xz = -xz;
yz = -yz;
yx = -yx;
zx = -zx;
zy = -zy;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>&
Shear6<T>::operator*= (const Shear6& h)
{
xy *= h.xy;
xz *= h.xz;
yz *= h.yz;
yx *= h.yx;
zx *= h.zx;
zy *= h.zy;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>&
Shear6<T>::operator*= (T a)
{
xy *= a;
xz *= a;
yz *= a;
yx *= a;
zx *= a;
zy *= a;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Shear6<T>
Shear6<T>::operator* (const Shear6& h) const
{
return Shear6 (xy * h.xy, xz * h.xz, yz * h.yz, yx * h.yx, zx * h.zx, zy * h.zy);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Shear6<T>
Shear6<T>::operator* (T a) const
{
return Shear6 (xy * a, xz * a, yz * a, yx * a, zx * a, zy * a);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>&
Shear6<T>::operator/= (const Shear6& h)
{
xy /= h.xy;
xz /= h.xz;
yz /= h.yz;
yx /= h.yx;
zx /= h.zx;
zy /= h.zy;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Shear6<T>&
Shear6<T>::operator/= (T a)
{
xy /= a;
xz /= a;
yz /= a;
yx /= a;
zx /= a;
zy /= a;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Shear6<T>
Shear6<T>::operator/ (const Shear6& h) const
{
return Shear6 (xy / h.xy, xz / h.xz, yz / h.yz, yx / h.yx, zx / h.zx, zy / h.zy);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Shear6<T>
Shear6<T>::operator/ (T a) const
{
return Shear6 (xy / a, xz / a, yz / a, yx / a, zx / a, zy / a);
}
//-----------------------------
// Stream output implementation
//-----------------------------
template <class T>
std::ostream&
operator<< (std::ostream& s, const Shear6<T>& h)
{
return s << '(' << h.xy << ' ' << h.xz << ' ' << h.yz << h.yx << ' ' << h.zx << ' ' << h.zy
<< ')';
}
//-----------------------------------------
// Implementation of reverse multiplication
//-----------------------------------------
template <class S, class T>
IMATH_HOSTDEVICE constexpr inline Shear6<T>
operator* (S a, const Shear6<T>& h)
{
return Shear6<T> (a * h.xy, a * h.xz, a * h.yz, a * h.yx, a * h.zx, a * h.zy);
}
IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
#endif // INCLUDED_IMATHSHEAR_H