DYT/Tool/OpenSceneGraph-3.6.5/include/Imath/ImathVec.h

2268 lines
62 KiB
C
Raw Permalink Normal View History

2024-12-24 23:49:36 +00:00
//
// SPDX-License-Identifier: BSD-3-Clause
// Copyright Contributors to the OpenEXR Project.
//
//
// 2D, 3D and 4D point/vector class templates
//
#ifndef INCLUDED_IMATHVEC_H
#define INCLUDED_IMATHVEC_H
#include "ImathExport.h"
#include "ImathNamespace.h"
#include "ImathTypeTraits.h"
#include "ImathMath.h"
#include <iostream>
#include <limits>
#include <cstdint>
#include <stdexcept>
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
// suppress exception specification warnings
# pragma warning(push)
# pragma warning(disable : 4290)
#endif
IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
template <class T> class Vec2;
template <class T> class Vec3;
template <class T> class Vec4;
/// Enum for the Vec4 to Vec3 conversion constructor
enum IMATH_EXPORT_ENUM InfException
{
INF_EXCEPTION
};
///
/// 2-element vector
///
template <class T> class IMATH_EXPORT_TEMPLATE_TYPE Vec2
{
public:
/// @{
/// @name Direct access to elements
T x, y;
/// @}
/// Element access by index.
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 T& operator[] (int i) IMATH_NOEXCEPT;
/// Element access by index.
IMATH_HOSTDEVICE constexpr const T& operator[] (int i) const IMATH_NOEXCEPT;
/// @{
/// @name Constructors and Assignment
/// Uninitialized by default
IMATH_HOSTDEVICE Vec2() IMATH_NOEXCEPT;
/// Initialize to a scalar `(a,a)`
IMATH_HOSTDEVICE constexpr explicit Vec2 (T a) IMATH_NOEXCEPT;
/// Initialize to given elements `(a,b)`
IMATH_HOSTDEVICE constexpr Vec2 (T a, T b) IMATH_NOEXCEPT;
/// Copy constructor
IMATH_HOSTDEVICE constexpr Vec2 (const Vec2& v) IMATH_NOEXCEPT;
/// Construct from Vec2 of another base type
template <class S> IMATH_HOSTDEVICE constexpr Vec2 (const Vec2<S>& v) IMATH_NOEXCEPT;
/// Assignment
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec2& operator= (const Vec2& v) IMATH_NOEXCEPT;
/// Destructor
~Vec2() IMATH_NOEXCEPT = default;
/// @}
#if IMATH_FOREIGN_VECTOR_INTEROP
/// @{
/// @name Interoperability with other vector types
///
/// Construction and assignment are allowed from other classes that
/// appear to be equivalent vector types, provided that they have either
/// a subscripting operator, or data members .x and .y, that are of the
/// same type as the elements of this vector, and their size appears to
/// be the right number of elements.
///
/// This functionality is disabled for gcc 4.x, which seems to have a
/// compiler bug that results in spurious errors. It can also be
/// disabled by defining IMATH_FOREIGN_VECTOR_INTEROP to be 0 prior to
/// including any Imath header files.
///
template<typename V, IMATH_ENABLE_IF(has_xy<V,T>::value)>
IMATH_HOSTDEVICE explicit constexpr Vec2 (const V& v) IMATH_NOEXCEPT
: Vec2(T(v.x), T(v.y)) { }
template<typename V, IMATH_ENABLE_IF(has_subscript<V,T,2>::value
&& !has_xy<V,T>::value)>
IMATH_HOSTDEVICE explicit Vec2 (const V& v) : Vec2(T(v[0]), T(v[1])) { }
template<typename V, IMATH_ENABLE_IF(has_xy<V,T>::value)>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec2& operator= (const V& v) IMATH_NOEXCEPT {
x = T(v.x);
y = T(v.y);
return *this;
}
template<typename V, IMATH_ENABLE_IF(has_subscript<V,T,2>::value
&& !has_xy<V,T>::value)>
IMATH_HOSTDEVICE const Vec2& operator= (const V& v) {
x = T(v[0]);
y = T(v[1]);
return *this;
}
#endif
/// @{
/// @name Compatibility with Sb
/// Set the value
template <class S> IMATH_HOSTDEVICE void setValue (S a, S b) IMATH_NOEXCEPT;
/// Set the value
template <class S> IMATH_HOSTDEVICE void setValue (const Vec2<S>& v) IMATH_NOEXCEPT;
/// Return the value in `a` and `b`
template <class S> IMATH_HOSTDEVICE void getValue (S& a, S& b) const IMATH_NOEXCEPT;
/// Return the value in `v`
template <class S> IMATH_HOSTDEVICE void getValue (Vec2<S>& v) const IMATH_NOEXCEPT;
/// Return a raw pointer to the array of values
IMATH_HOSTDEVICE T* getValue() IMATH_NOEXCEPT;
/// Return a raw pointer to the array of values
IMATH_HOSTDEVICE const T* getValue() const IMATH_NOEXCEPT;
/// @}
/// @{
/// @name Arithmetic and Comparison
/// Equality
template <class S> IMATH_HOSTDEVICE constexpr bool operator== (const Vec2<S>& v) const IMATH_NOEXCEPT;
/// Inequality
template <class S> IMATH_HOSTDEVICE constexpr bool operator!= (const Vec2<S>& v) const IMATH_NOEXCEPT;
/// Compare two matrices and test if they are "approximately equal":
/// @return True if the coefficients of this and `m` are the same
/// with an absolute error of no more than e, i.e., for all i, j:
///
/// abs (this[i][j] - m[i][j]) <= e
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 bool equalWithAbsError (const Vec2<T>& v, T e) const IMATH_NOEXCEPT;
/// Compare two matrices and test if they are "approximately equal":
/// @return True if the coefficients of this and m are the same with
/// a relative error of no more than e, i.e., for all i, j:
///
/// abs (this[i] - v[i][j]) <= e * abs (this[i][j])
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 bool equalWithRelError (const Vec2<T>& v, T e) const IMATH_NOEXCEPT;
/// Dot product
IMATH_HOSTDEVICE constexpr T dot (const Vec2& v) const IMATH_NOEXCEPT;
/// Dot product
IMATH_HOSTDEVICE constexpr T operator^ (const Vec2& v) const IMATH_NOEXCEPT;
/// Right-handed cross product, i.e. z component of
/// Vec3 (this->x, this->y, 0) % Vec3 (v.x, v.y, 0)
IMATH_HOSTDEVICE constexpr T cross (const Vec2& v) const IMATH_NOEXCEPT;
/// Right-handed cross product, i.e. z component of
/// Vec3 (this->x, this->y, 0) % Vec3 (v.x, v.y, 0)
IMATH_HOSTDEVICE constexpr T operator% (const Vec2& v) const IMATH_NOEXCEPT;
/// Component-wise addition
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec2& operator+= (const Vec2& v) IMATH_NOEXCEPT;
/// Component-wise addition
IMATH_HOSTDEVICE constexpr Vec2 operator+ (const Vec2& v) const IMATH_NOEXCEPT;
/// Component-wise subtraction
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec2& operator-= (const Vec2& v) IMATH_NOEXCEPT;
/// Component-wise subtraction
IMATH_HOSTDEVICE constexpr Vec2 operator- (const Vec2& v) const IMATH_NOEXCEPT;
/// Component-wise multiplication by -1
IMATH_HOSTDEVICE constexpr Vec2 operator-() const IMATH_NOEXCEPT;
/// Component-wise multiplication by -1
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec2& negate() IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec2& operator*= (const Vec2& v) IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec2& operator*= (T a) IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE constexpr Vec2 operator* (const Vec2& v) const IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE constexpr Vec2 operator* (T a) const IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec2& operator/= (const Vec2& v) IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec2& operator/= (T a) IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE constexpr Vec2 operator/ (const Vec2& v) const IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE constexpr Vec2 operator/ (T a) const IMATH_NOEXCEPT;
/// @}
/// @{
/// @name Query and Manipulation
/// Return the Euclidean norm
IMATH_HOSTDEVICE T length() const IMATH_NOEXCEPT;
/// Return the square of the Euclidean norm, i.e. the dot product
/// with itself.
IMATH_HOSTDEVICE constexpr T length2() const IMATH_NOEXCEPT;
/// Normalize in place. If length()==0, return a null vector.
IMATH_HOSTDEVICE const Vec2& normalize() IMATH_NOEXCEPT;
/// Normalize in place. If length()==0, throw an exception.
const Vec2& normalizeExc();
/// Normalize without any checks for length()==0. Slightly faster
/// than the other normalization routines, but if v.length() is
/// 0.0, the result is undefined.
IMATH_HOSTDEVICE const Vec2& normalizeNonNull() IMATH_NOEXCEPT;
/// Return a normalized vector. Does not modify *this.
IMATH_HOSTDEVICE Vec2<T> normalized() const IMATH_NOEXCEPT;
/// Return a normalized vector. Does not modify *this. Throw an
/// exception if length()==0.
Vec2<T> normalizedExc() const;
/// Return a normalized vector. Does not modify *this, and does
/// not check for length()==0. Slightly faster than the other
/// normalization routines, but if v.length() is 0.0, the result
/// is undefined.
IMATH_HOSTDEVICE Vec2<T> normalizedNonNull() const IMATH_NOEXCEPT;
/// @}
/// @{
/// @name Numeric Limits
/// Largest possible negative value
IMATH_HOSTDEVICE constexpr static T baseTypeLowest() IMATH_NOEXCEPT { return std::numeric_limits<T>::lowest(); }
/// Largest possible positive value
IMATH_HOSTDEVICE constexpr static T baseTypeMax() IMATH_NOEXCEPT { return std::numeric_limits<T>::max(); }
/// Smallest possible positive value
IMATH_HOSTDEVICE constexpr static T baseTypeSmallest() IMATH_NOEXCEPT { return std::numeric_limits<T>::min(); }
/// Smallest possible e for which 1+e != 1
IMATH_HOSTDEVICE constexpr static T baseTypeEpsilon() IMATH_NOEXCEPT { return std::numeric_limits<T>::epsilon(); }
/// @}
/// Return the number of dimensions, i.e. 2
IMATH_HOSTDEVICE constexpr static unsigned int dimensions() IMATH_NOEXCEPT { return 2; }
/// The base type: In templates that accept a parameter `V`, you
/// can refer to `T` as `V::BaseType`
typedef T BaseType;
private:
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 T lengthTiny() const IMATH_NOEXCEPT;
};
///
/// 3-element vector
///
template <class T> class IMATH_EXPORT_TEMPLATE_TYPE Vec3
{
public:
/// @{
/// @name Direct access to elements
T x, y, z;
/// @}
/// Element access by index.
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 T& operator[] (int i) IMATH_NOEXCEPT;
/// Element access by index.
IMATH_HOSTDEVICE constexpr const T& operator[] (int i) const IMATH_NOEXCEPT;
/// @{
/// @name Constructors and Assignment
/// Uninitialized by default
IMATH_HOSTDEVICE Vec3() IMATH_NOEXCEPT;
/// Initialize to a scalar `(a,a,a)`
IMATH_HOSTDEVICE constexpr explicit Vec3 (T a) IMATH_NOEXCEPT;
/// Initialize to given elements `(a,b,c)`
IMATH_HOSTDEVICE constexpr Vec3 (T a, T b, T c) IMATH_NOEXCEPT;
/// Copy constructor
IMATH_HOSTDEVICE constexpr Vec3 (const Vec3& v) IMATH_NOEXCEPT;
/// Construct from Vec3 of another base type
template <class S> IMATH_HOSTDEVICE constexpr Vec3 (const Vec3<S>& v) IMATH_NOEXCEPT;
/// Vec4 to Vec3 conversion: divide x, y and z by w, even if w is
/// 0. The result depends on how the environment handles
/// floating-point exceptions.
template <class S> IMATH_HOSTDEVICE explicit constexpr Vec3 (const Vec4<S>& v) IMATH_NOEXCEPT;
/// Vec4 to Vec3 conversion: divide x, y and z by w. Throws an
/// exception if w is zero or if division by w would overflow.
template <class S>
explicit IMATH_HOSTDEVICE IMATH_CONSTEXPR14 Vec3 (const Vec4<S>& v, InfException);
/// Assignment
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec3& operator= (const Vec3& v) IMATH_NOEXCEPT;
/// Destructor
~Vec3() IMATH_NOEXCEPT = default;
/// @}
#if IMATH_FOREIGN_VECTOR_INTEROP
/// @{
/// @name Interoperability with other vector types
///
/// Construction and assignment are allowed from other classes that
/// appear to be equivalent vector types, provided that they have either
/// a subscripting operator, or data members .x, .y, .z, that are of the
/// same type as the elements of this vector, and their size appears to
/// be the right number of elements.
///
/// This functionality is disabled for gcc 4.x, which seems to have a
/// compiler bug that results in spurious errors. It can also be
/// disabled by defining IMATH_FOREIGN_VECTOR_INTEROP to be 0 prior to
/// including any Imath header files.
///
template<typename V, IMATH_ENABLE_IF(has_xyz<V,T>::value)>
IMATH_HOSTDEVICE explicit constexpr Vec3 (const V& v) IMATH_NOEXCEPT
: Vec3(T(v.x), T(v.y), T(v.z)) { }
template<typename V, IMATH_ENABLE_IF(has_subscript<V,T,3>::value
&& !has_xyz<V,T>::value)>
IMATH_HOSTDEVICE explicit Vec3 (const V& v) : Vec3(T(v[0]), T(v[1]), T(v[2])) { }
/// Interoperability assignment from another type that behaves as if it
/// were an equivalent vector.
template<typename V, IMATH_ENABLE_IF(has_xyz<V,T>::value)>
IMATH_HOSTDEVICE const Vec3& operator= (const V& v) IMATH_NOEXCEPT {
x = T(v.x);
y = T(v.y);
z = T(v.z);
return *this;
}
template<typename V, IMATH_ENABLE_IF(has_subscript<V,T,3>::value
&& !has_xyz<V,T>::value)>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec3& operator= (const V& v) {
x = T(v[0]);
y = T(v[1]);
z = T(v[2]);
return *this;
}
/// @}
#endif
/// @{
/// @name Compatibility with Sb
/// Set the value
template <class S> IMATH_HOSTDEVICE void setValue (S a, S b, S c) IMATH_NOEXCEPT;
/// Set the value
template <class S> IMATH_HOSTDEVICE void setValue (const Vec3<S>& v) IMATH_NOEXCEPT;
/// Return the value in `a`, `b`, and `c`
template <class S> IMATH_HOSTDEVICE void getValue (S& a, S& b, S& c) const IMATH_NOEXCEPT;
/// Return the value in `v`
template <class S> IMATH_HOSTDEVICE void getValue (Vec3<S>& v) const IMATH_NOEXCEPT;
/// Return a raw pointer to the array of values
IMATH_HOSTDEVICE T* getValue() IMATH_NOEXCEPT;
/// Return a raw pointer to the array of values
IMATH_HOSTDEVICE const T* getValue() const IMATH_NOEXCEPT;
/// @}
/// @{
/// @name Arithmetic and Comparison
/// Equality
template <class S> IMATH_HOSTDEVICE constexpr bool operator== (const Vec3<S>& v) const IMATH_NOEXCEPT;
/// Inequality
template <class S> IMATH_HOSTDEVICE constexpr bool operator!= (const Vec3<S>& v) const IMATH_NOEXCEPT;
/// Compare two matrices and test if they are "approximately equal":
/// @return True if the coefficients of this and `m` are the same
/// with an absolute error of no more than e, i.e., for all i, j:
///
/// abs (this[i][j] - m[i][j]) <= e
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 bool equalWithAbsError (const Vec3<T>& v, T e) const IMATH_NOEXCEPT;
/// Compare two matrices and test if they are "approximately equal":
/// @return True if the coefficients of this and m are the same with
/// a relative error of no more than e, i.e., for all i, j:
///
/// abs (this[i] - v[i][j]) <= e * abs (this[i][j])
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 bool equalWithRelError (const Vec3<T>& v, T e) const IMATH_NOEXCEPT;
/// Dot product
IMATH_HOSTDEVICE constexpr T dot (const Vec3& v) const IMATH_NOEXCEPT;
/// Dot product
IMATH_HOSTDEVICE constexpr T operator^ (const Vec3& v) const IMATH_NOEXCEPT;
/// Right-handed cross product
IMATH_HOSTDEVICE constexpr Vec3 cross (const Vec3& v) const IMATH_NOEXCEPT;
/// Right-handed cross product
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec3& operator%= (const Vec3& v) IMATH_NOEXCEPT;
/// Right-handed cross product
IMATH_HOSTDEVICE constexpr Vec3 operator% (const Vec3& v) const IMATH_NOEXCEPT;
/// Component-wise addition
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec3& operator+= (const Vec3& v) IMATH_NOEXCEPT;
/// Component-wise addition
IMATH_HOSTDEVICE constexpr Vec3 operator+ (const Vec3& v) const IMATH_NOEXCEPT;
/// Component-wise subtraction
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec3& operator-= (const Vec3& v) IMATH_NOEXCEPT;
/// Component-wise subtraction
IMATH_HOSTDEVICE constexpr Vec3 operator- (const Vec3& v) const IMATH_NOEXCEPT;
/// Component-wise multiplication by -1
IMATH_HOSTDEVICE constexpr Vec3 operator-() const IMATH_NOEXCEPT;
/// Component-wise multiplication by -1
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec3& negate() IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec3& operator*= (const Vec3& v) IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec3& operator*= (T a) IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE constexpr Vec3 operator* (const Vec3& v) const IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE constexpr Vec3 operator* (T a) const IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec3& operator/= (const Vec3& v) IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec3& operator/= (T a) IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE constexpr Vec3 operator/ (const Vec3& v) const IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE constexpr Vec3 operator/ (T a) const IMATH_NOEXCEPT;
/// @}
/// @{
/// @name Query and Manipulation
/// Return the Euclidean norm
IMATH_HOSTDEVICE T length() const IMATH_NOEXCEPT;
/// Return the square of the Euclidean norm, i.e. the dot product
/// with itself.
IMATH_HOSTDEVICE constexpr T length2() const IMATH_NOEXCEPT;
/// Normalize in place. If length()==0, return a null vector.
IMATH_HOSTDEVICE const Vec3& normalize() IMATH_NOEXCEPT;
/// Normalize in place. If length()==0, throw an exception.
const Vec3& normalizeExc();
/// Normalize without any checks for length()==0. Slightly faster
/// than the other normalization routines, but if v.length() is
/// 0.0, the result is undefined.
IMATH_HOSTDEVICE const Vec3& normalizeNonNull() IMATH_NOEXCEPT;
/// Return a normalized vector. Does not modify *this.
IMATH_HOSTDEVICE Vec3<T> normalized() const IMATH_NOEXCEPT; // does not modify *this
/// Return a normalized vector. Does not modify *this. Throw an
/// exception if length()==0.
Vec3<T> normalizedExc() const;
/// Return a normalized vector. Does not modify *this, and does
/// not check for length()==0. Slightly faster than the other
/// normalization routines, but if v.length() is 0.0, the result
/// is undefined.
IMATH_HOSTDEVICE Vec3<T> normalizedNonNull() const IMATH_NOEXCEPT;
/// @}
/// @{
/// @name Numeric Limits
/// Largest possible negative value
IMATH_HOSTDEVICE constexpr static T baseTypeLowest() IMATH_NOEXCEPT { return std::numeric_limits<T>::lowest(); }
/// Largest possible positive value
IMATH_HOSTDEVICE constexpr static T baseTypeMax() IMATH_NOEXCEPT { return std::numeric_limits<T>::max(); }
/// Smallest possible positive value
IMATH_HOSTDEVICE constexpr static T baseTypeSmallest() IMATH_NOEXCEPT { return std::numeric_limits<T>::min(); }
/// Smallest possible e for which 1+e != 1
IMATH_HOSTDEVICE constexpr static T baseTypeEpsilon() IMATH_NOEXCEPT { return std::numeric_limits<T>::epsilon(); }
/// @}
/// Return the number of dimensions, i.e. 3
IMATH_HOSTDEVICE constexpr static unsigned int dimensions() IMATH_NOEXCEPT { return 3; }
/// The base type: In templates that accept a parameter `V`, you
/// can refer to `T` as `V::BaseType`
typedef T BaseType;
private:
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 T lengthTiny() const IMATH_NOEXCEPT;
};
///
/// 4-element vector
///
template <class T> class IMATH_EXPORT_TEMPLATE_TYPE Vec4
{
public:
/// @{
/// @name Direct access to elements
T x, y, z, w;
/// @}
/// Element access by index.
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 T& operator[] (int i) IMATH_NOEXCEPT;
/// Element access by index.
IMATH_HOSTDEVICE constexpr const T& operator[] (int i) const IMATH_NOEXCEPT;
/// @{
/// @name Constructors and Assignment
/// Uninitialized by default
IMATH_HOSTDEVICE Vec4() IMATH_NOEXCEPT; // no initialization
/// Initialize to a scalar `(a,a,a,a)`
IMATH_HOSTDEVICE constexpr explicit Vec4 (T a) IMATH_NOEXCEPT;
/// Initialize to given elements `(a,b,c,d)`
IMATH_HOSTDEVICE constexpr Vec4 (T a, T b, T c, T d) IMATH_NOEXCEPT;
/// Copy constructor
IMATH_HOSTDEVICE constexpr Vec4 (const Vec4& v) IMATH_NOEXCEPT;
/// Construct from Vec4 of another base type
template <class S> IMATH_HOSTDEVICE constexpr Vec4 (const Vec4<S>& v) IMATH_NOEXCEPT;
/// Vec3 to Vec4 conversion, sets w to 1.
template <class S> IMATH_HOSTDEVICE explicit constexpr Vec4 (const Vec3<S>& v) IMATH_NOEXCEPT;
/// Assignment
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec4& operator= (const Vec4& v) IMATH_NOEXCEPT;
/// Destructor
~Vec4() IMATH_NOEXCEPT = default;
/// @}
#if IMATH_FOREIGN_VECTOR_INTEROP
/// @{
/// @name Interoperability with other vector types
///
/// Construction and assignment are allowed from other classes that
/// appear to be equivalent vector types, provided that they have either
/// a subscripting operator, or data members .x, .y, .z, .w that are of
/// the same type as the elements of this vector, and their size appears
/// to be the right number of elements.
///
/// This functionality is disabled for gcc 4.x, which seems to have a
/// compiler bug that results in spurious errors. It can also be
/// disabled by defining IMATH_FOREIGN_VECTOR_INTEROP to be 0 prior to
/// including any Imath header files.
///
template<typename V, IMATH_ENABLE_IF(has_xyzw<V,T>::value)>
IMATH_HOSTDEVICE explicit constexpr Vec4 (const V& v) IMATH_NOEXCEPT
: Vec4(T(v.x), T(v.y), T(v.z), T(v.w)) { }
template<typename V, IMATH_ENABLE_IF(has_subscript<V,T,4>::value
&& !has_xyzw<V,T>::value)>
IMATH_HOSTDEVICE explicit Vec4 (const V& v) : Vec4(T(v[0]), T(v[1]), T(v[2]), T(v[3])) { }
template<typename V, IMATH_ENABLE_IF(has_xyzw<V,T>::value)>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec4& operator= (const V& v) IMATH_NOEXCEPT {
x = T(v.x);
y = T(v.y);
z = T(v.z);
w = T(v.w);
return *this;
}
template<typename V, IMATH_ENABLE_IF(has_subscript<V,T,4>::value
&& !has_xyzw<V,T>::value)>
IMATH_HOSTDEVICE const Vec4& operator= (const V& v) {
x = T(v[0]);
y = T(v[1]);
z = T(v[2]);
w = T(v[3]);
return *this;
}
/// @}
#endif
/// @{
/// @name Arithmetic and Comparison
/// Equality
template <class S> IMATH_HOSTDEVICE constexpr bool operator== (const Vec4<S>& v) const IMATH_NOEXCEPT;
/// Inequality
template <class S> IMATH_HOSTDEVICE constexpr bool operator!= (const Vec4<S>& v) const IMATH_NOEXCEPT;
/// Compare two matrices and test if they are "approximately equal":
/// @return True if the coefficients of this and `m` are the same
/// with an absolute error of no more than e, i.e., for all i, j:
///
/// abs (this[i][j] - m[i][j]) <= e
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 bool equalWithAbsError (const Vec4<T>& v, T e) const IMATH_NOEXCEPT;
/// Compare two matrices and test if they are "approximately equal":
/// @return True if the coefficients of this and m are the same with
/// a relative error of no more than e, i.e., for all i, j:
///
/// abs (this[i] - v[i][j]) <= e * abs (this[i][j])
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 bool equalWithRelError (const Vec4<T>& v, T e) const IMATH_NOEXCEPT;
/// Dot product
IMATH_HOSTDEVICE constexpr T dot (const Vec4& v) const IMATH_NOEXCEPT;
/// Dot product
IMATH_HOSTDEVICE constexpr T operator^ (const Vec4& v) const IMATH_NOEXCEPT;
/// Component-wise addition
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec4& operator+= (const Vec4& v) IMATH_NOEXCEPT;
/// Component-wise addition
IMATH_HOSTDEVICE constexpr Vec4 operator+ (const Vec4& v) const IMATH_NOEXCEPT;
/// Component-wise subtraction
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec4& operator-= (const Vec4& v) IMATH_NOEXCEPT;
/// Component-wise subtraction
IMATH_HOSTDEVICE constexpr Vec4 operator- (const Vec4& v) const IMATH_NOEXCEPT;
/// Component-wise multiplication by -1
IMATH_HOSTDEVICE constexpr Vec4 operator-() const IMATH_NOEXCEPT;
/// Component-wise multiplication by -1
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec4& negate() IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec4& operator*= (const Vec4& v) IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec4& operator*= (T a) IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE constexpr Vec4 operator* (const Vec4& v) const IMATH_NOEXCEPT;
/// Component-wise multiplication
IMATH_HOSTDEVICE constexpr Vec4 operator* (T a) const IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec4& operator/= (const Vec4& v) IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 const Vec4& operator/= (T a) IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE constexpr Vec4 operator/ (const Vec4& v) const IMATH_NOEXCEPT;
/// Component-wise division
IMATH_HOSTDEVICE constexpr Vec4 operator/ (T a) const IMATH_NOEXCEPT;
/// @}
/// @{
/// @name Query and Manipulation
/// Return the Euclidean norm
IMATH_HOSTDEVICE T length() const IMATH_NOEXCEPT;
/// Return the square of the Euclidean norm, i.e. the dot product
/// with itself.
IMATH_HOSTDEVICE constexpr T length2() const IMATH_NOEXCEPT;
/// Normalize in place. If length()==0, return a null vector.
IMATH_HOSTDEVICE const Vec4& normalize() IMATH_NOEXCEPT; // modifies *this
/// Normalize in place. If length()==0, throw an exception.
const Vec4& normalizeExc();
/// Normalize without any checks for length()==0. Slightly faster
/// than the other normalization routines, but if v.length() is
/// 0.0, the result is undefined.
IMATH_HOSTDEVICE const Vec4& normalizeNonNull() IMATH_NOEXCEPT;
/// Return a normalized vector. Does not modify *this.
IMATH_HOSTDEVICE Vec4<T> normalized() const IMATH_NOEXCEPT; // does not modify *this
/// Return a normalized vector. Does not modify *this. Throw an
/// exception if length()==0.
Vec4<T> normalizedExc() const;
/// Return a normalized vector. Does not modify *this, and does
/// not check for length()==0. Slightly faster than the other
/// normalization routines, but if v.length() is 0.0, the result
/// is undefined.
IMATH_HOSTDEVICE Vec4<T> normalizedNonNull() const IMATH_NOEXCEPT;
/// @}
/// @{
/// @name Numeric Limits
/// Largest possible negative value
IMATH_HOSTDEVICE constexpr static T baseTypeLowest() IMATH_NOEXCEPT { return std::numeric_limits<T>::lowest(); }
/// Largest possible positive value
IMATH_HOSTDEVICE constexpr static T baseTypeMax() IMATH_NOEXCEPT { return std::numeric_limits<T>::max(); }
/// Smallest possible positive value
IMATH_HOSTDEVICE constexpr static T baseTypeSmallest() IMATH_NOEXCEPT { return std::numeric_limits<T>::min(); }
/// Smallest possible e for which 1+e != 1
IMATH_HOSTDEVICE constexpr static T baseTypeEpsilon() IMATH_NOEXCEPT { return std::numeric_limits<T>::epsilon(); }
/// @}
/// Return the number of dimensions, i.e. 4
IMATH_HOSTDEVICE constexpr static unsigned int dimensions() IMATH_NOEXCEPT { return 4; }
/// The base type: In templates that accept a parameter `V`, you
/// can refer to `T` as `V::BaseType`
typedef T BaseType;
private:
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 T lengthTiny() const IMATH_NOEXCEPT;
};
/// Stream output, as "(x y)"
template <class T> std::ostream& operator<< (std::ostream& s, const Vec2<T>& v);
/// Stream output, as "(x y z)"
template <class T> std::ostream& operator<< (std::ostream& s, const Vec3<T>& v);
/// Stream output, as "(x y z w)"
template <class T> std::ostream& operator<< (std::ostream& s, const Vec4<T>& v);
/// Reverse multiplication: S * Vec2<T>
template <class T> IMATH_HOSTDEVICE constexpr Vec2<T> operator* (T a, const Vec2<T>& v) IMATH_NOEXCEPT;
/// Reverse multiplication: S * Vec3<T>
template <class T> IMATH_HOSTDEVICE constexpr Vec3<T> operator* (T a, const Vec3<T>& v) IMATH_NOEXCEPT;
/// Reverse multiplication: S * Vec4<T>
template <class T> IMATH_HOSTDEVICE constexpr Vec4<T> operator* (T a, const Vec4<T>& v) IMATH_NOEXCEPT;
//-------------------------
// Typedefs for convenience
//-------------------------
/// Vec2 of short
typedef Vec2<short> V2s;
/// Vec2 of integer
typedef Vec2<int> V2i;
/// Vec2 of int64_t
typedef Vec2<int64_t> V2i64;
/// Vec2 of float
typedef Vec2<float> V2f;
/// Vec2 of double
typedef Vec2<double> V2d;
/// Vec3 of short
typedef Vec3<short> V3s;
/// Vec3 of integer
typedef Vec3<int> V3i;
/// Vec3 of int64_t
typedef Vec3<int64_t> V3i64;
/// Vec3 of float
typedef Vec3<float> V3f;
/// Vec3 of double
typedef Vec3<double> V3d;
/// Vec4 of short
typedef Vec4<short> V4s;
/// Vec4 of integer
typedef Vec4<int> V4i;
/// Vec4 of int64_t
typedef Vec4<int64_t> V4i64;
/// Vec4 of float
typedef Vec4<float> V4f;
/// Vec4 of double
typedef Vec4<double> V4d;
//----------------------------------------------------------------------------
// Specializations for VecN<short>, VecN<int>
//
// Normalize and length don't make sense for integer vectors, so disable them.
//----------------------------------------------------------------------------
/// @cond Doxygen_Suppress
// Vec2<short>
template <> IMATH_HOSTDEVICE short Vec2<short>::length() const IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE const Vec2<short>& Vec2<short>::normalize() IMATH_NOEXCEPT = delete;
template <> const Vec2<short>& Vec2<short>::normalizeExc() = delete;
template <> IMATH_HOSTDEVICE const Vec2<short>& Vec2<short>::normalizeNonNull() IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE Vec2<short> Vec2<short>::normalized() const IMATH_NOEXCEPT = delete;
template <> Vec2<short> Vec2<short>::normalizedExc() const = delete;
template <> IMATH_HOSTDEVICE Vec2<short> Vec2<short>::normalizedNonNull() const IMATH_NOEXCEPT = delete;
// Vec2<int>
template <> IMATH_HOSTDEVICE int Vec2<int>::length() const IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE const Vec2<int>& Vec2<int>::normalize() IMATH_NOEXCEPT = delete;
template <> const Vec2<int>& Vec2<int>::normalizeExc() = delete;
template <> IMATH_HOSTDEVICE const Vec2<int>& Vec2<int>::normalizeNonNull() IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE Vec2<int> Vec2<int>::normalized() const IMATH_NOEXCEPT = delete;
template <> Vec2<int> Vec2<int>::normalizedExc() const = delete;
template <> IMATH_HOSTDEVICE Vec2<int> Vec2<int>::normalizedNonNull() const IMATH_NOEXCEPT = delete;
// Vec2<int64_t>
template <> IMATH_HOSTDEVICE int64_t Vec2<int64_t>::length() const IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE const Vec2<int64_t>& Vec2<int64_t>::normalize() IMATH_NOEXCEPT = delete;
template <> const Vec2<int64_t>& Vec2<int64_t>::normalizeExc() = delete;
template <> IMATH_HOSTDEVICE const Vec2<int64_t>& Vec2<int64_t>::normalizeNonNull() IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE Vec2<int64_t> Vec2<int64_t>::normalized() const IMATH_NOEXCEPT = delete;
template <> Vec2<int64_t> Vec2<int64_t>::normalizedExc() const = delete;
template <> IMATH_HOSTDEVICE Vec2<int64_t> Vec2<int64_t>::normalizedNonNull() const IMATH_NOEXCEPT = delete;
// Vec3<short>
template <> IMATH_HOSTDEVICE short Vec3<short>::length() const IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE const Vec3<short>& Vec3<short>::normalize() IMATH_NOEXCEPT = delete;
template <> const Vec3<short>& Vec3<short>::normalizeExc() = delete;
template <> IMATH_HOSTDEVICE const Vec3<short>& Vec3<short>::normalizeNonNull() IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE Vec3<short> Vec3<short>::normalized() const IMATH_NOEXCEPT = delete;
template <> Vec3<short> Vec3<short>::normalizedExc() const = delete;
template <> IMATH_HOSTDEVICE Vec3<short> Vec3<short>::normalizedNonNull() const IMATH_NOEXCEPT = delete;
// Vec3<int>
template <> IMATH_HOSTDEVICE int Vec3<int>::length() const IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE const Vec3<int>& Vec3<int>::normalize() IMATH_NOEXCEPT = delete;
template <> const Vec3<int>& Vec3<int>::normalizeExc() = delete;
template <> IMATH_HOSTDEVICE const Vec3<int>& Vec3<int>::normalizeNonNull() IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE Vec3<int> Vec3<int>::normalized() const IMATH_NOEXCEPT = delete;
template <> Vec3<int> Vec3<int>::normalizedExc() const = delete;
template <> IMATH_HOSTDEVICE Vec3<int> Vec3<int>::normalizedNonNull() const IMATH_NOEXCEPT = delete;
// Vec3<int64_t>
template <> IMATH_HOSTDEVICE int64_t Vec3<int64_t>::length() const IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE const Vec3<int64_t>& Vec3<int64_t>::normalize() IMATH_NOEXCEPT = delete;
template <> const Vec3<int64_t>& Vec3<int64_t>::normalizeExc() = delete;
template <> IMATH_HOSTDEVICE const Vec3<int64_t>& Vec3<int64_t>::normalizeNonNull() IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE Vec3<int64_t> Vec3<int64_t>::normalized() const IMATH_NOEXCEPT = delete;
template <> Vec3<int64_t> Vec3<int64_t>::normalizedExc() const = delete;
template <> IMATH_HOSTDEVICE Vec3<int64_t> Vec3<int64_t>::normalizedNonNull() const IMATH_NOEXCEPT = delete;
// Vec4<short>
template <> IMATH_HOSTDEVICE short Vec4<short>::length() const IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE const Vec4<short>& Vec4<short>::normalize() IMATH_NOEXCEPT = delete;
template <> const Vec4<short>& Vec4<short>::normalizeExc() = delete;
template <> IMATH_HOSTDEVICE const Vec4<short>& Vec4<short>::normalizeNonNull() IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE Vec4<short> Vec4<short>::normalized() const IMATH_NOEXCEPT = delete;
template <> Vec4<short> Vec4<short>::normalizedExc() const = delete;
template <> IMATH_HOSTDEVICE Vec4<short> Vec4<short>::normalizedNonNull() const IMATH_NOEXCEPT = delete;
// Vec4<int>
template <> IMATH_HOSTDEVICE int Vec4<int>::length() const IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE const Vec4<int>& Vec4<int>::normalize() IMATH_NOEXCEPT = delete;
template <> const Vec4<int>& Vec4<int>::normalizeExc() = delete;
template <> IMATH_HOSTDEVICE const Vec4<int>& Vec4<int>::normalizeNonNull() IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE Vec4<int> Vec4<int>::normalized() const IMATH_NOEXCEPT = delete;
template <> Vec4<int> Vec4<int>::normalizedExc() const = delete;
template <> IMATH_HOSTDEVICE Vec4<int> Vec4<int>::normalizedNonNull() const IMATH_NOEXCEPT = delete;
// Vec4<int64_t>
template <> IMATH_HOSTDEVICE int64_t Vec4<int64_t>::length() const IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE const Vec4<int64_t>& Vec4<int64_t>::normalize() IMATH_NOEXCEPT = delete;
template <> const Vec4<int64_t>& Vec4<int64_t>::normalizeExc() = delete;
template <> IMATH_HOSTDEVICE const Vec4<int64_t>& Vec4<int64_t>::normalizeNonNull() IMATH_NOEXCEPT = delete;
template <> IMATH_HOSTDEVICE Vec4<int64_t> Vec4<int64_t>::normalized() const IMATH_NOEXCEPT = delete;
template <> Vec4<int64_t> Vec4<int64_t>::normalizedExc() const = delete;
template <> IMATH_HOSTDEVICE Vec4<int64_t> Vec4<int64_t>::normalizedNonNull() const IMATH_NOEXCEPT = delete;
/// @endcond Doxygen_Suppress
//------------------------
// Implementation of Vec2:
//------------------------
template <class T>
IMATH_CONSTEXPR14 IMATH_HOSTDEVICE inline T&
Vec2<T>::operator[] (int i) IMATH_NOEXCEPT
{
return (&x)[i]; // NOSONAR - suppress SonarCloud bug report.
}
template <class T>
constexpr IMATH_HOSTDEVICE inline const T&
Vec2<T>::operator[] (int i) const IMATH_NOEXCEPT
{
return (&x)[i]; // NOSONAR - suppress SonarCloud bug report.
}
template <class T> IMATH_HOSTDEVICE inline Vec2<T>::Vec2() IMATH_NOEXCEPT
{
// empty, and not constexpr because data is uninitialized.
}
template <class T> IMATH_HOSTDEVICE constexpr inline Vec2<T>::Vec2 (T a) IMATH_NOEXCEPT
: x(a), y(a)
{
}
template <class T> IMATH_HOSTDEVICE constexpr inline Vec2<T>::Vec2 (T a, T b) IMATH_NOEXCEPT
: x(a), y(b)
{
}
template <class T> IMATH_HOSTDEVICE constexpr inline Vec2<T>::Vec2 (const Vec2& v) IMATH_NOEXCEPT
: x(v.x), y(v.y)
{
}
template <class T> template <class S> IMATH_HOSTDEVICE constexpr inline Vec2<T>::Vec2 (const Vec2<S>& v) IMATH_NOEXCEPT
: x(T(v.x)), y(T(v.y))
{
}
template <class T>
IMATH_CONSTEXPR14 IMATH_HOSTDEVICE inline const Vec2<T>&
Vec2<T>::operator= (const Vec2& v) IMATH_NOEXCEPT
{
x = v.x;
y = v.y;
return *this;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Vec2<T>::setValue (S a, S b) IMATH_NOEXCEPT
{
x = T (a);
y = T (b);
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Vec2<T>::setValue (const Vec2<S>& v) IMATH_NOEXCEPT
{
x = T (v.x);
y = T (v.y);
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Vec2<T>::getValue (S& a, S& b) const IMATH_NOEXCEPT
{
a = S (x);
b = S (y);
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Vec2<T>::getValue (Vec2<S>& v) const IMATH_NOEXCEPT
{
v.x = S (x);
v.y = S (y);
}
template <class T>
IMATH_HOSTDEVICE inline T*
Vec2<T>::getValue() IMATH_NOEXCEPT
{
return (T*) &x;
}
template <class T>
IMATH_HOSTDEVICE inline const T*
Vec2<T>::getValue() const IMATH_NOEXCEPT
{
return (const T*) &x;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE constexpr inline bool
Vec2<T>::operator== (const Vec2<S>& v) const IMATH_NOEXCEPT
{
return x == v.x && y == v.y;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE constexpr inline bool
Vec2<T>::operator!= (const Vec2<S>& v) const IMATH_NOEXCEPT
{
return x != v.x || y != v.y;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline bool
Vec2<T>::equalWithAbsError (const Vec2<T>& v, T e) const IMATH_NOEXCEPT
{
for (int i = 0; i < 2; i++)
if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i], v[i], e))
return false;
return true;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline bool
Vec2<T>::equalWithRelError (const Vec2<T>& v, T e) const IMATH_NOEXCEPT
{
for (int i = 0; i < 2; i++)
if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i], v[i], e))
return false;
return true;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline T
Vec2<T>::dot (const Vec2& v) const IMATH_NOEXCEPT
{
return x * v.x + y * v.y;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline T
Vec2<T>::operator^ (const Vec2& v) const IMATH_NOEXCEPT
{
return dot (v);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline T
Vec2<T>::cross (const Vec2& v) const IMATH_NOEXCEPT
{
return x * v.y - y * v.x;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline T
Vec2<T>::operator% (const Vec2& v) const IMATH_NOEXCEPT
{
return x * v.y - y * v.x;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec2<T>&
Vec2<T>::operator+= (const Vec2& v) IMATH_NOEXCEPT
{
x += v.x;
y += v.y;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec2<T>
Vec2<T>::operator+ (const Vec2& v) const IMATH_NOEXCEPT
{
return Vec2 (x + v.x, y + v.y);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec2<T>&
Vec2<T>::operator-= (const Vec2& v) IMATH_NOEXCEPT
{
x -= v.x;
y -= v.y;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec2<T>
Vec2<T>::operator- (const Vec2& v) const IMATH_NOEXCEPT
{
return Vec2 (x - v.x, y - v.y);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec2<T>
Vec2<T>::operator-() const IMATH_NOEXCEPT
{
return Vec2 (-x, -y);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec2<T>&
Vec2<T>::negate() IMATH_NOEXCEPT
{
x = -x;
y = -y;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec2<T>&
Vec2<T>::operator*= (const Vec2& v) IMATH_NOEXCEPT
{
x *= v.x;
y *= v.y;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec2<T>&
Vec2<T>::operator*= (T a) IMATH_NOEXCEPT
{
x *= a;
y *= a;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec2<T>
Vec2<T>::operator* (const Vec2& v) const IMATH_NOEXCEPT
{
return Vec2 (x * v.x, y * v.y);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec2<T>
Vec2<T>::operator* (T a) const IMATH_NOEXCEPT
{
return Vec2 (x * a, y * a);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec2<T>&
Vec2<T>::operator/= (const Vec2& v) IMATH_NOEXCEPT
{
x /= v.x;
y /= v.y;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec2<T>&
Vec2<T>::operator/= (T a) IMATH_NOEXCEPT
{
x /= a;
y /= a;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec2<T>
Vec2<T>::operator/ (const Vec2& v) const IMATH_NOEXCEPT
{
return Vec2 (x / v.x, y / v.y);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec2<T>
Vec2<T>::operator/ (T a) const IMATH_NOEXCEPT
{
return Vec2 (x / a, y / a);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline T
Vec2<T>::lengthTiny() const IMATH_NOEXCEPT
{
T absX = std::abs(x);
T absY = std::abs(y);
T max = absX;
if (max < absY)
max = absY;
if (IMATH_UNLIKELY(max == T (0)))
return T (0);
//
// Do not replace the divisions by max with multiplications by 1/max.
// Computing 1/max can overflow but the divisions below will always
// produce results less than or equal to 1.
//
absX /= max;
absY /= max;
return max * std::sqrt (absX * absX + absY * absY);
}
template <class T>
IMATH_HOSTDEVICE inline T
Vec2<T>::length() const IMATH_NOEXCEPT
{
T length2 = dot (*this);
if (IMATH_UNLIKELY(length2 < T (2) * std::numeric_limits<T>::min()))
return lengthTiny();
return std::sqrt (length2);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline T
Vec2<T>::length2() const IMATH_NOEXCEPT
{
return dot (*this);
}
template <class T>
IMATH_HOSTDEVICE inline const Vec2<T>&
Vec2<T>::normalize() IMATH_NOEXCEPT
{
T l = length();
if (IMATH_LIKELY(l != T (0)))
{
//
// Do not replace the divisions by l with multiplications by 1/l.
// Computing 1/l can overflow but the divisions below will always
// produce results less than or equal to 1.
//
x /= l;
y /= l;
}
return *this;
}
template <class T>
inline const Vec2<T>&
Vec2<T>::normalizeExc()
{
T l = length();
if (IMATH_UNLIKELY(l == T (0)))
throw std::domain_error ("Cannot normalize null vector.");
x /= l;
y /= l;
return *this;
}
template <class T>
IMATH_HOSTDEVICE inline const Vec2<T>&
Vec2<T>::normalizeNonNull() IMATH_NOEXCEPT
{
T l = length();
x /= l;
y /= l;
return *this;
}
template <class T>
IMATH_HOSTDEVICE inline Vec2<T>
Vec2<T>::normalized() const IMATH_NOEXCEPT
{
T l = length();
if (IMATH_UNLIKELY(l == T (0)))
return Vec2 (T (0));
return Vec2 (x / l, y / l);
}
template <class T>
inline Vec2<T>
Vec2<T>::normalizedExc() const
{
T l = length();
if (IMATH_UNLIKELY(l == T (0)))
throw std::domain_error ("Cannot normalize null vector.");
return Vec2 (x / l, y / l);
}
template <class T>
IMATH_HOSTDEVICE inline Vec2<T>
Vec2<T>::normalizedNonNull() const IMATH_NOEXCEPT
{
T l = length();
return Vec2 (x / l, y / l);
}
//-----------------------
// Implementation of Vec3
//-----------------------
template <class T>
IMATH_HOSTDEVICE
IMATH_CONSTEXPR14 inline T&
Vec3<T>::operator[] (int i) IMATH_NOEXCEPT
{
return (&x)[i]; // NOSONAR - suppress SonarCloud bug report.
}
template <class T>
IMATH_HOSTDEVICE constexpr inline const T&
Vec3<T>::operator[] (int i) const IMATH_NOEXCEPT
{
return (&x)[i]; // NOSONAR - suppress SonarCloud bug report.
}
template <class T> IMATH_HOSTDEVICE inline Vec3<T>::Vec3() IMATH_NOEXCEPT
{
// empty, and not constexpr because data is uninitialized.
}
template <class T> IMATH_HOSTDEVICE constexpr inline Vec3<T>::Vec3 (T a) IMATH_NOEXCEPT
: x(a), y(a), z(a)
{
}
template <class T> IMATH_HOSTDEVICE constexpr inline Vec3<T>::Vec3 (T a, T b, T c) IMATH_NOEXCEPT
: x(a), y(b), z(c)
{
}
template <class T> IMATH_HOSTDEVICE constexpr inline Vec3<T>::Vec3 (const Vec3& v) IMATH_NOEXCEPT
: x(v.x), y(v.y), z(v.z)
{
}
template <class T> template <class S>
IMATH_HOSTDEVICE constexpr inline Vec3<T>::Vec3 (const Vec3<S>& v) IMATH_NOEXCEPT
: x(T(v.x)), y(T(v.y)), z(T(v.z))
{
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec3<T>&
Vec3<T>::operator= (const Vec3& v) IMATH_NOEXCEPT
{
x = v.x;
y = v.y;
z = v.z;
return *this;
}
template <class T> template <class S>
IMATH_HOSTDEVICE constexpr inline Vec3<T>::Vec3 (const Vec4<S>& v) IMATH_NOEXCEPT
: x(T(v.x/v.w)), y(T(v.y/v.w)), z(T(v.z/v.w))
{
}
template <class T>
template <class S>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline Vec3<T>::Vec3 (const Vec4<S>& v, InfException)
{
T vx = T (v.x);
T vy = T (v.y);
T vz = T (v.z);
T vw = T (v.w);
T absW = (vw >= T (0)) ? vw : -vw;
if (absW < 1)
{
T m = baseTypeMax() * absW;
if (vx <= -m || vx >= m || vy <= -m || vy >= m || vz <= -m || vz >= m)
throw std::domain_error ("Cannot normalize point at infinity.");
}
x = vx / vw;
y = vy / vw;
z = vz / vw;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Vec3<T>::setValue (S a, S b, S c) IMATH_NOEXCEPT
{
x = T (a);
y = T (b);
z = T (c);
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Vec3<T>::setValue (const Vec3<S>& v) IMATH_NOEXCEPT
{
x = T (v.x);
y = T (v.y);
z = T (v.z);
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Vec3<T>::getValue (S& a, S& b, S& c) const IMATH_NOEXCEPT
{
a = S (x);
b = S (y);
c = S (z);
}
template <class T>
template <class S>
IMATH_HOSTDEVICE inline void
Vec3<T>::getValue (Vec3<S>& v) const IMATH_NOEXCEPT
{
v.x = S (x);
v.y = S (y);
v.z = S (z);
}
template <class T>
IMATH_HOSTDEVICE inline T*
Vec3<T>::getValue() IMATH_NOEXCEPT
{
return (T*) &x;
}
template <class T>
IMATH_HOSTDEVICE inline const T*
Vec3<T>::getValue() const IMATH_NOEXCEPT
{
return (const T*) &x;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE constexpr inline bool
Vec3<T>::operator== (const Vec3<S>& v) const IMATH_NOEXCEPT
{
return x == v.x && y == v.y && z == v.z;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE constexpr inline bool
Vec3<T>::operator!= (const Vec3<S>& v) const IMATH_NOEXCEPT
{
return x != v.x || y != v.y || z != v.z;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline bool
Vec3<T>::equalWithAbsError (const Vec3<T>& v, T e) const IMATH_NOEXCEPT
{
for (int i = 0; i < 3; i++)
if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i], v[i], e))
return false;
return true;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline bool
Vec3<T>::equalWithRelError (const Vec3<T>& v, T e) const IMATH_NOEXCEPT
{
for (int i = 0; i < 3; i++)
if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i], v[i], e))
return false;
return true;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline T
Vec3<T>::dot (const Vec3& v) const IMATH_NOEXCEPT
{
return x * v.x + y * v.y + z * v.z;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline T
Vec3<T>::operator^ (const Vec3& v) const IMATH_NOEXCEPT
{
return dot (v);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec3<T>
Vec3<T>::cross (const Vec3& v) const IMATH_NOEXCEPT
{
return Vec3 (y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec3<T>&
Vec3<T>::operator%= (const Vec3& v) IMATH_NOEXCEPT
{
T a = y * v.z - z * v.y;
T b = z * v.x - x * v.z;
T c = x * v.y - y * v.x;
x = a;
y = b;
z = c;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec3<T>
Vec3<T>::operator% (const Vec3& v) const IMATH_NOEXCEPT
{
return Vec3 (y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec3<T>&
Vec3<T>::operator+= (const Vec3& v) IMATH_NOEXCEPT
{
x += v.x;
y += v.y;
z += v.z;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec3<T>
Vec3<T>::operator+ (const Vec3& v) const IMATH_NOEXCEPT
{
return Vec3 (x + v.x, y + v.y, z + v.z);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec3<T>&
Vec3<T>::operator-= (const Vec3& v) IMATH_NOEXCEPT
{
x -= v.x;
y -= v.y;
z -= v.z;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec3<T>
Vec3<T>::operator- (const Vec3& v) const IMATH_NOEXCEPT
{
return Vec3 (x - v.x, y - v.y, z - v.z);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec3<T>
Vec3<T>::operator-() const IMATH_NOEXCEPT
{
return Vec3 (-x, -y, -z);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec3<T>&
Vec3<T>::negate() IMATH_NOEXCEPT
{
x = -x;
y = -y;
z = -z;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec3<T>&
Vec3<T>::operator*= (const Vec3& v) IMATH_NOEXCEPT
{
x *= v.x;
y *= v.y;
z *= v.z;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec3<T>&
Vec3<T>::operator*= (T a) IMATH_NOEXCEPT
{
x *= a;
y *= a;
z *= a;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec3<T>
Vec3<T>::operator* (const Vec3& v) const IMATH_NOEXCEPT
{
return Vec3 (x * v.x, y * v.y, z * v.z);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec3<T>
Vec3<T>::operator* (T a) const IMATH_NOEXCEPT
{
return Vec3 (x * a, y * a, z * a);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec3<T>&
Vec3<T>::operator/= (const Vec3& v) IMATH_NOEXCEPT
{
x /= v.x;
y /= v.y;
z /= v.z;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec3<T>&
Vec3<T>::operator/= (T a) IMATH_NOEXCEPT
{
x /= a;
y /= a;
z /= a;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec3<T>
Vec3<T>::operator/ (const Vec3& v) const IMATH_NOEXCEPT
{
return Vec3 (x / v.x, y / v.y, z / v.z);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec3<T>
Vec3<T>::operator/ (T a) const IMATH_NOEXCEPT
{
return Vec3 (x / a, y / a, z / a);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline T
Vec3<T>::lengthTiny() const IMATH_NOEXCEPT
{
T absX = (x >= T (0)) ? x : -x;
T absY = (y >= T (0)) ? y : -y;
T absZ = (z >= T (0)) ? z : -z;
T max = absX;
if (max < absY)
max = absY;
if (max < absZ)
max = absZ;
if (IMATH_UNLIKELY(max == T (0)))
return T (0);
//
// Do not replace the divisions by max with multiplications by 1/max.
// Computing 1/max can overflow but the divisions below will always
// produce results less than or equal to 1.
//
absX /= max;
absY /= max;
absZ /= max;
return max * std::sqrt (absX * absX + absY * absY + absZ * absZ);
}
template <class T>
IMATH_HOSTDEVICE inline T
Vec3<T>::length() const IMATH_NOEXCEPT
{
T length2 = dot (*this);
if (IMATH_UNLIKELY(length2 < T (2) * std::numeric_limits<T>::min()))
return lengthTiny();
return std::sqrt (length2);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline T
Vec3<T>::length2() const IMATH_NOEXCEPT
{
return dot (*this);
}
template <class T>
IMATH_HOSTDEVICE inline const Vec3<T>&
Vec3<T>::normalize() IMATH_NOEXCEPT
{
T l = length();
if (IMATH_LIKELY(l != T (0)))
{
//
// Do not replace the divisions by l with multiplications by 1/l.
// Computing 1/l can overflow but the divisions below will always
// produce results less than or equal to 1.
//
x /= l;
y /= l;
z /= l;
}
return *this;
}
template <class T>
inline const Vec3<T>&
Vec3<T>::normalizeExc()
{
T l = length();
if (IMATH_UNLIKELY(l == T (0)))
throw std::domain_error ("Cannot normalize null vector.");
x /= l;
y /= l;
z /= l;
return *this;
}
template <class T>
IMATH_HOSTDEVICE inline const Vec3<T>&
Vec3<T>::normalizeNonNull() IMATH_NOEXCEPT
{
T l = length();
x /= l;
y /= l;
z /= l;
return *this;
}
template <class T>
IMATH_HOSTDEVICE inline Vec3<T>
Vec3<T>::normalized() const IMATH_NOEXCEPT
{
T l = length();
if (IMATH_UNLIKELY((l == T (0))))
return Vec3 (T (0));
return Vec3 (x / l, y / l, z / l);
}
template <class T>
inline Vec3<T>
Vec3<T>::normalizedExc() const
{
T l = length();
if (IMATH_UNLIKELY(l == T (0)))
throw std::domain_error ("Cannot normalize null vector.");
return Vec3 (x / l, y / l, z / l);
}
template <class T>
IMATH_HOSTDEVICE inline Vec3<T>
Vec3<T>::normalizedNonNull() const IMATH_NOEXCEPT
{
T l = length();
return Vec3 (x / l, y / l, z / l);
}
//-----------------------
// Implementation of Vec4
//-----------------------
template <class T>
IMATH_HOSTDEVICE
IMATH_CONSTEXPR14 inline T&
Vec4<T>::operator[] (int i) IMATH_NOEXCEPT
{
return (&x)[i]; // NOSONAR - suppress SonarCloud bug report.
}
template <class T>
IMATH_HOSTDEVICE constexpr inline const T&
Vec4<T>::operator[] (int i) const IMATH_NOEXCEPT
{
return (&x)[i]; // NOSONAR - suppress SonarCloud bug report.
}
template <class T> IMATH_HOSTDEVICE inline Vec4<T>::Vec4() IMATH_NOEXCEPT
{
// empty, and not constexpr because data is uninitialized.
}
template <class T> IMATH_HOSTDEVICE constexpr inline Vec4<T>::Vec4 (T a) IMATH_NOEXCEPT
: x(a), y(a), z(a), w(a)
{
}
template <class T> IMATH_HOSTDEVICE constexpr inline Vec4<T>::Vec4 (T a, T b, T c, T d) IMATH_NOEXCEPT
: x(a), y(b), z(c), w(d)
{
}
template <class T> IMATH_HOSTDEVICE constexpr inline Vec4<T>::Vec4 (const Vec4& v) IMATH_NOEXCEPT
: x(v.x), y(v.y), z(v.z), w(v.w)
{
}
template <class T> template <class S>
IMATH_HOSTDEVICE constexpr inline Vec4<T>::Vec4 (const Vec4<S>& v) IMATH_NOEXCEPT
: x(T(v.x)), y(T(v.y)), z(T(v.z)), w(T(v.w))
{
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec4<T>&
Vec4<T>::operator= (const Vec4& v) IMATH_NOEXCEPT
{
x = v.x;
y = v.y;
z = v.z;
w = v.w;
return *this;
}
template <class T> template <class S>
IMATH_HOSTDEVICE constexpr inline Vec4<T>::Vec4 (const Vec3<S>& v) IMATH_NOEXCEPT
: x(T(v.x)), y(T(v.y)), z(T(v.z)), w(T(1))
{
}
template <class T>
template <class S>
IMATH_HOSTDEVICE constexpr inline bool
Vec4<T>::operator== (const Vec4<S>& v) const IMATH_NOEXCEPT
{
return x == v.x && y == v.y && z == v.z && w == v.w;
}
template <class T>
template <class S>
IMATH_HOSTDEVICE constexpr inline bool
Vec4<T>::operator!= (const Vec4<S>& v) const IMATH_NOEXCEPT
{
return x != v.x || y != v.y || z != v.z || w != v.w;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline bool
Vec4<T>::equalWithAbsError (const Vec4<T>& v, T e) const IMATH_NOEXCEPT
{
for (int i = 0; i < 4; i++)
if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i], v[i], e))
return false;
return true;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline bool
Vec4<T>::equalWithRelError (const Vec4<T>& v, T e) const IMATH_NOEXCEPT
{
for (int i = 0; i < 4; i++)
if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i], v[i], e))
return false;
return true;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline T
Vec4<T>::dot (const Vec4& v) const IMATH_NOEXCEPT
{
return x * v.x + y * v.y + z * v.z + w * v.w;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline T
Vec4<T>::operator^ (const Vec4& v) const IMATH_NOEXCEPT
{
return dot (v);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec4<T>&
Vec4<T>::operator+= (const Vec4& v) IMATH_NOEXCEPT
{
x += v.x;
y += v.y;
z += v.z;
w += v.w;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec4<T>
Vec4<T>::operator+ (const Vec4& v) const IMATH_NOEXCEPT
{
return Vec4 (x + v.x, y + v.y, z + v.z, w + v.w);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec4<T>&
Vec4<T>::operator-= (const Vec4& v) IMATH_NOEXCEPT
{
x -= v.x;
y -= v.y;
z -= v.z;
w -= v.w;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec4<T>
Vec4<T>::operator- (const Vec4& v) const IMATH_NOEXCEPT
{
return Vec4 (x - v.x, y - v.y, z - v.z, w - v.w);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec4<T>
Vec4<T>::operator-() const IMATH_NOEXCEPT
{
return Vec4 (-x, -y, -z, -w);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec4<T>&
Vec4<T>::negate() IMATH_NOEXCEPT
{
x = -x;
y = -y;
z = -z;
w = -w;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec4<T>&
Vec4<T>::operator*= (const Vec4& v) IMATH_NOEXCEPT
{
x *= v.x;
y *= v.y;
z *= v.z;
w *= v.w;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec4<T>&
Vec4<T>::operator*= (T a) IMATH_NOEXCEPT
{
x *= a;
y *= a;
z *= a;
w *= a;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec4<T>
Vec4<T>::operator* (const Vec4& v) const IMATH_NOEXCEPT
{
return Vec4 (x * v.x, y * v.y, z * v.z, w * v.w);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec4<T>
Vec4<T>::operator* (T a) const IMATH_NOEXCEPT
{
return Vec4 (x * a, y * a, z * a, w * a);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec4<T>&
Vec4<T>::operator/= (const Vec4& v) IMATH_NOEXCEPT
{
x /= v.x;
y /= v.y;
z /= v.z;
w /= v.w;
return *this;
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline const Vec4<T>&
Vec4<T>::operator/= (T a) IMATH_NOEXCEPT
{
x /= a;
y /= a;
z /= a;
w /= a;
return *this;
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec4<T>
Vec4<T>::operator/ (const Vec4& v) const IMATH_NOEXCEPT
{
return Vec4 (x / v.x, y / v.y, z / v.z, w / v.w);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec4<T>
Vec4<T>::operator/ (T a) const IMATH_NOEXCEPT
{
return Vec4 (x / a, y / a, z / a, w / a);
}
template <class T>
IMATH_HOSTDEVICE IMATH_CONSTEXPR14 inline T
Vec4<T>::lengthTiny() const IMATH_NOEXCEPT
{
T absX = (x >= T (0)) ? x : -x;
T absY = (y >= T (0)) ? y : -y;
T absZ = (z >= T (0)) ? z : -z;
T absW = (w >= T (0)) ? w : -w;
T max = absX;
if (max < absY)
max = absY;
if (max < absZ)
max = absZ;
if (max < absW)
max = absW;
if (IMATH_UNLIKELY(max == T (0)))
return T (0);
//
// Do not replace the divisions by max with multiplications by 1/max.
// Computing 1/max can overflow but the divisions below will always
// produce results less than or equal to 1.
//
absX /= max;
absY /= max;
absZ /= max;
absW /= max;
return max * std::sqrt (absX * absX + absY * absY + absZ * absZ + absW * absW);
}
template <class T>
IMATH_HOSTDEVICE inline T
Vec4<T>::length() const IMATH_NOEXCEPT
{
T length2 = dot (*this);
if (IMATH_UNLIKELY(length2 < T (2) * std::numeric_limits<T>::min()))
return lengthTiny();
return std::sqrt (length2);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline T
Vec4<T>::length2() const IMATH_NOEXCEPT
{
return dot (*this);
}
template <class T>
IMATH_HOSTDEVICE const inline Vec4<T>&
Vec4<T>::normalize() IMATH_NOEXCEPT
{
T l = length();
if (IMATH_LIKELY(l != T (0)))
{
//
// Do not replace the divisions by l with multiplications by 1/l.
// Computing 1/l can overflow but the divisions below will always
// produce results less than or equal to 1.
//
x /= l;
y /= l;
z /= l;
w /= l;
}
return *this;
}
template <class T>
const inline Vec4<T>&
Vec4<T>::normalizeExc()
{
T l = length();
if (IMATH_UNLIKELY(l == T (0)))
throw std::domain_error ("Cannot normalize null vector.");
x /= l;
y /= l;
z /= l;
w /= l;
return *this;
}
template <class T>
IMATH_HOSTDEVICE inline const Vec4<T>&
Vec4<T>::normalizeNonNull() IMATH_NOEXCEPT
{
T l = length();
x /= l;
y /= l;
z /= l;
w /= l;
return *this;
}
template <class T>
IMATH_HOSTDEVICE inline Vec4<T>
Vec4<T>::normalized() const IMATH_NOEXCEPT
{
T l = length();
if (IMATH_UNLIKELY(l == T (0)))
return Vec4 (T (0));
return Vec4 (x / l, y / l, z / l, w / l);
}
template <class T>
inline Vec4<T>
Vec4<T>::normalizedExc() const
{
T l = length();
if (IMATH_UNLIKELY(l == T (0)))
throw std::domain_error ("Cannot normalize null vector.");
return Vec4 (x / l, y / l, z / l, w / l);
}
template <class T>
IMATH_HOSTDEVICE inline Vec4<T>
Vec4<T>::normalizedNonNull() const IMATH_NOEXCEPT
{
T l = length();
return Vec4 (x / l, y / l, z / l, w / l);
}
//-----------------------------
// Stream output implementation
//-----------------------------
template <class T>
std::ostream&
operator<< (std::ostream& s, const Vec2<T>& v)
{
return s << '(' << v.x << ' ' << v.y << ')';
}
template <class T>
std::ostream&
operator<< (std::ostream& s, const Vec3<T>& v)
{
return s << '(' << v.x << ' ' << v.y << ' ' << v.z << ')';
}
template <class T>
std::ostream&
operator<< (std::ostream& s, const Vec4<T>& v)
{
return s << '(' << v.x << ' ' << v.y << ' ' << v.z << ' ' << v.w << ')';
}
//-----------------------------------------
// Implementation of reverse multiplication
//-----------------------------------------
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec2<T>
operator* (T a, const Vec2<T>& v) IMATH_NOEXCEPT
{
return Vec2<T> (a * v.x, a * v.y);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec3<T>
operator* (T a, const Vec3<T>& v) IMATH_NOEXCEPT
{
return Vec3<T> (a * v.x, a * v.y, a * v.z);
}
template <class T>
IMATH_HOSTDEVICE constexpr inline Vec4<T>
operator* (T a, const Vec4<T>& v) IMATH_NOEXCEPT
{
return Vec4<T> (a * v.x, a * v.y, a * v.z, a * v.w);
}
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
# pragma warning(pop)
#endif
IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
#endif // INCLUDED_IMATHVEC_H