DYT/Tool/OpenSceneGraph-3.6.5/include/google/protobuf/repeated_field.h

1447 lines
51 KiB
C
Raw Normal View History

2024-12-24 23:49:36 +00:00
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields. These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers. RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// This header covers RepeatedField.
#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <limits>
#include <memory>
#include <type_traits>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/base/optimization.h"
#include "absl/log/absl_check.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/cord.h"
#include "google/protobuf/arena.h"
#include "google/protobuf/generated_enum_util.h"
#include "google/protobuf/internal_visibility.h"
#include "google/protobuf/message_lite.h"
#include "google/protobuf/port.h"
#include "google/protobuf/repeated_ptr_field.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
class Message;
class UnknownField; // For the allowlist
namespace internal {
template <typename T, int kHeapRepHeaderSize>
constexpr int RepeatedFieldLowerClampLimit() {
// The header is padded to be at least `sizeof(T)` when it would be smaller
// otherwise.
static_assert(sizeof(T) <= kHeapRepHeaderSize, "");
// We want to pad the minimum size to be a power of two bytes, including the
// header.
// The first allocation is kHeapRepHeaderSize bytes worth of elements for a
// total of 2*kHeapRepHeaderSize bytes. For an 8-byte header, we allocate 8
// bool, 2 ints, or 1 int64.
return kHeapRepHeaderSize / sizeof(T);
}
// kRepeatedFieldUpperClampLimit is the lowest signed integer value that
// overflows when multiplied by 2 (which is undefined behavior). Sizes above
// this will clamp to the maximum int value instead of following exponential
// growth when growing a repeated field.
#if defined(__cpp_inline_variables)
inline constexpr int kRepeatedFieldUpperClampLimit =
#else
constexpr int kRepeatedFieldUpperClampLimit =
#endif
(std::numeric_limits<int>::max() / 2) + 1;
template <typename Element>
class RepeatedIterator;
// Sentinel base class.
struct RepeatedFieldBase {};
// We can't skip the destructor for, e.g., arena allocated RepeatedField<Cord>.
template <typename Element,
bool Trivial = Arena::is_destructor_skippable<Element>::value>
struct RepeatedFieldDestructorSkippableBase : RepeatedFieldBase {};
template <typename Element>
struct RepeatedFieldDestructorSkippableBase<Element, true> : RepeatedFieldBase {
using DestructorSkippable_ = void;
};
template <size_t kMinSize>
struct HeapRep {
// Avoid 'implicitly deleted dtor' warnings on certain compilers.
~HeapRep() = delete;
void* elements() { return this + 1; }
// Align to 8 as sanitizers are picky on the alignment of containers to start
// at 8 byte offsets even when compiling for 32 bit platforms.
union {
alignas(8) Arena* arena;
// We pad the header to be at least `sizeof(Element)` so that we have
// power-of-two sized allocations, which enables Arena optimizations.
char padding[kMinSize];
};
};
// We use small object optimization (SOO) to store elements inline when possible
// for small repeated fields. We do so in order to avoid memory indirections.
// Note that SOO is disabled on 32-bit platforms due to alignment limitations.
// SOO data is stored in the same space as the size/capacity ints.
enum { kSooCapacityBytes = 2 * sizeof(int) };
// Arena/elements pointers are aligned to at least kSooPtrAlignment bytes so we
// can use the lower bits to encode whether we're in SOO mode and if so, the
// SOO size. NOTE: we also tried using all kSooPtrMask bits to encode SOO size
// and use all ones as a sentinel value for non-SOO mode, but that was slower in
// benchmarks/loadtests.
enum { kSooPtrAlignment = 8 };
// The mask for the size bits in SOO mode, and also a sentinel value indicating
// that the field is not in SOO mode.
enum { kSooPtrMask = ~(kSooPtrAlignment - 1) };
// This bit is 0 when in SOO mode and 1 when in non-SOO mode.
enum { kNotSooBit = kSooPtrAlignment >> 1 };
// These bits are used to encode the size when in SOO mode (sizes are 0-3).
enum { kSooSizeMask = kNotSooBit - 1 };
// The number of elements that can be stored in the SOO rep. On 64-bit
// platforms, this is 1 for int64_t, 2 for int32_t, 3 for bool, and 0 for
// absl::Cord. We return 0 to disable SOO on 32-bit platforms.
constexpr int SooCapacityElements(size_t element_size) {
if (sizeof(void*) < 8) return 0;
return std::min<int>(kSooCapacityBytes / element_size, kSooSizeMask);
}
struct LongSooRep {
// Returns char* rather than void* so callers can do pointer arithmetic.
char* elements() const {
auto ret = reinterpret_cast<char*>(elements_int & kSooPtrMask);
ABSL_DCHECK_NE(ret, nullptr);
return ret;
}
uintptr_t elements_int;
int size;
int capacity;
};
struct ShortSooRep {
constexpr ShortSooRep() = default;
explicit ShortSooRep(Arena* arena)
: arena_and_size(reinterpret_cast<uintptr_t>(arena)) {
ABSL_DCHECK_EQ(size(), 0);
}
int size() const { return arena_and_size & kSooSizeMask; }
bool is_soo() const { return (arena_and_size & kNotSooBit) == 0; }
uintptr_t arena_and_size = 0;
union {
char data[kSooCapacityBytes];
// NOTE: in some language versions, we can't have a constexpr constructor
// if we don't initialize all fields, but `data` doesn't need to be
// initialized so initialize an empty dummy variable instead.
std::true_type dummy = {};
};
};
struct SooRep {
constexpr SooRep() : short_rep() {}
explicit SooRep(Arena* arena) : short_rep(arena) {}
bool is_soo() const {
static_assert(sizeof(LongSooRep) == sizeof(ShortSooRep), "");
static_assert(offsetof(SooRep, long_rep) == offsetof(SooRep, short_rep),
"");
static_assert(offsetof(LongSooRep, elements_int) ==
offsetof(ShortSooRep, arena_and_size),
"");
return short_rep.is_soo();
}
Arena* soo_arena() const {
ABSL_DCHECK(is_soo());
return reinterpret_cast<Arena*>(short_rep.arena_and_size & kSooPtrMask);
}
int size(bool is_soo) const {
ABSL_DCHECK_EQ(is_soo, this->is_soo());
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
return is_soo ? short_rep.size() : long_rep.size;
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
}
void set_size(bool is_soo, int size) {
ABSL_DCHECK_EQ(is_soo, this->is_soo());
if (is_soo) {
ABSL_DCHECK_LE(size, kSooSizeMask);
short_rep.arena_and_size &= kSooPtrMask;
short_rep.arena_and_size |= size;
} else {
long_rep.size = size;
}
}
// Initializes the SooRep in non-SOO mode with the given capacity and heap
// allocation.
void set_non_soo(bool was_soo, int capacity, void* elements) {
ABSL_DCHECK_EQ(was_soo, is_soo());
ABSL_DCHECK_NE(elements, nullptr);
ABSL_DCHECK_EQ(reinterpret_cast<uintptr_t>(elements) % kSooPtrAlignment,
uintptr_t{0});
if (was_soo) long_rep.size = short_rep.size();
long_rep.capacity = capacity;
long_rep.elements_int = reinterpret_cast<uintptr_t>(elements) | kNotSooBit;
}
union {
LongSooRep long_rep;
ShortSooRep short_rep;
};
};
} // namespace internal
// RepeatedField is used to represent repeated fields of a primitive type (in
// other words, everything except strings and nested Messages). Most users will
// not ever use a RepeatedField directly; they will use the get-by-index,
// set-by-index, and add accessors that are generated for all repeated fields.
// Actually, in addition to primitive types, we use RepeatedField for repeated
// Cords, because the Cord class is in fact just a reference-counted pointer.
// We have to specialize several methods in the Cord case to get the memory
// management right; e.g. swapping when appropriate, etc.
template <typename Element>
class RepeatedField final
: private internal::RepeatedFieldDestructorSkippableBase<Element> {
static_assert(
alignof(Arena) >= alignof(Element),
"We only support types that have an alignment smaller than Arena");
static_assert(!std::is_const<Element>::value,
"We do not support const value types.");
static_assert(!std::is_volatile<Element>::value,
"We do not support volatile value types.");
static_assert(!std::is_pointer<Element>::value,
"We do not support pointer value types.");
static_assert(!std::is_reference<Element>::value,
"We do not support reference value types.");
static constexpr PROTOBUF_ALWAYS_INLINE void StaticValidityCheck() {
static_assert(
absl::disjunction<internal::is_supported_integral_type<Element>,
internal::is_supported_floating_point_type<Element>,
std::is_same<absl::Cord, Element>,
std::is_same<UnknownField, Element>,
is_proto_enum<Element>>::value,
"We only support non-string scalars in RepeatedField.");
}
public:
using value_type = Element;
using size_type = int;
using difference_type = ptrdiff_t;
using reference = Element&;
using const_reference = const Element&;
using pointer = Element*;
using const_pointer = const Element*;
using iterator = internal::RepeatedIterator<Element>;
using const_iterator = internal::RepeatedIterator<const Element>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
constexpr RepeatedField();
RepeatedField(const RepeatedField& rhs) : RepeatedField(nullptr, rhs) {}
// TODO: make this constructor private
explicit RepeatedField(Arena* arena);
template <typename Iter,
typename = typename std::enable_if<std::is_constructible<
Element, decltype(*std::declval<Iter>())>::value>::type>
RepeatedField(Iter begin, Iter end);
// Arena enabled constructors: for internal use only.
RepeatedField(internal::InternalVisibility, Arena* arena)
: RepeatedField(arena) {}
RepeatedField(internal::InternalVisibility, Arena* arena,
const RepeatedField& rhs)
: RepeatedField(arena, rhs) {}
RepeatedField& operator=(const RepeatedField& other)
ABSL_ATTRIBUTE_LIFETIME_BOUND;
RepeatedField(RepeatedField&& rhs) noexcept
: RepeatedField(nullptr, std::move(rhs)) {}
RepeatedField& operator=(RepeatedField&& other) noexcept
ABSL_ATTRIBUTE_LIFETIME_BOUND;
~RepeatedField();
bool empty() const;
int size() const;
const_reference Get(int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND;
pointer Mutable(int index) ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_reference operator[](int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return Get(index);
}
reference operator[](int index) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return *Mutable(index);
}
const_reference at(int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND;
reference at(int index) ABSL_ATTRIBUTE_LIFETIME_BOUND;
void Set(int index, const Element& value);
void Add(Element value);
// Appends a new element and returns a pointer to it.
// The new element is uninitialized if |Element| is a POD type.
pointer Add() ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Appends elements in the range [begin, end) after reserving
// the appropriate number of elements.
template <typename Iter>
void Add(Iter begin, Iter end);
// Removes the last element in the array.
void RemoveLast();
// Extracts elements with indices in "[start .. start+num-1]".
// Copies them into "elements[0 .. num-1]" if "elements" is not nullptr.
// Caution: also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
void ExtractSubrange(int start, int num, Element* elements);
ABSL_ATTRIBUTE_REINITIALIZES void Clear();
// Appends the elements from `other` after this instance.
// The end result length will be `other.size() + this->size()`.
void MergeFrom(const RepeatedField& other);
// Replaces the contents with a copy of the elements from `other`.
ABSL_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedField& other);
// Replaces the contents with RepeatedField(begin, end).
template <typename Iter>
ABSL_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end);
// Reserves space to expand the field to at least the given size. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
// Resizes the RepeatedField to a new, smaller size. This is O(1).
// Except for RepeatedField<Cord>, for which it is O(size-new_size).
void Truncate(int new_size);
void AddAlreadyReserved(Element value);
int Capacity() const;
// Adds `n` elements to this instance asserting there is enough capacity.
// The added elements are uninitialized if `Element` is trivial.
pointer AddAlreadyReserved() ABSL_ATTRIBUTE_LIFETIME_BOUND;
pointer AddNAlreadyReserved(int n) ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Like STL resize. Uses value to fill appended elements.
// Like Truncate() if new_size <= size(), otherwise this is
// O(new_size - size()).
void Resize(size_type new_size, const Element& value);
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
pointer mutable_data() ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_pointer data() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Swaps entire contents with "other". If they are separate arenas, then
// copies data between each other.
void Swap(RepeatedField* other);
// Swaps two elements.
void SwapElements(int index1, int index2);
iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Reverse iterator support
reverse_iterator rbegin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_reverse_iterator(end());
}
reverse_iterator rend() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return reverse_iterator(begin());
}
const_reverse_iterator rend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_reverse_iterator(begin());
}
// Returns the number of bytes used by the repeated field, excluding
// sizeof(*this)
size_t SpaceUsedExcludingSelfLong() const;
int SpaceUsedExcludingSelf() const {
return internal::ToIntSize(SpaceUsedExcludingSelfLong());
}
// Removes the element referenced by position.
//
// Returns an iterator to the element immediately following the removed
// element.
//
// Invalidates all iterators at or after the removed element, including end().
iterator erase(const_iterator position) ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Removes the elements in the range [first, last).
//
// Returns an iterator to the element immediately following the removed range.
//
// Invalidates all iterators at or after the removed range, including end().
iterator erase(const_iterator first,
const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Gets the Arena on which this RepeatedField stores its elements.
// Note: this can be inaccurate for split default fields so we make this
// function non-const.
inline Arena* GetArena() { return GetArena(is_soo()); }
// For internal use only.
//
// This is public due to it being called by generated code.
inline void InternalSwap(RepeatedField* other);
static constexpr size_t InternalGetArenaOffset(internal::InternalVisibility) {
return PROTOBUF_FIELD_OFFSET(RepeatedField, soo_rep_) +
PROTOBUF_FIELD_OFFSET(internal::ShortSooRep, arena_and_size);
}
private:
using InternalArenaConstructable_ = void;
// We use std::max in order to share template instantiations between
// different element types.
using HeapRep = internal::HeapRep<std::max<size_t>(sizeof(Element), 8)>;
template <typename T>
friend class Arena::InternalHelper;
friend class Arena;
static constexpr int kSooCapacityElements =
internal::SooCapacityElements(sizeof(Element));
static constexpr int kInitialSize = 0;
static PROTOBUF_CONSTEXPR const size_t kHeapRepHeaderSize = sizeof(HeapRep);
RepeatedField(Arena* arena, const RepeatedField& rhs);
RepeatedField(Arena* arena, RepeatedField&& rhs);
inline Arena* GetArena(bool is_soo) const {
return is_soo ? soo_rep_.soo_arena() : heap_rep()->arena;
}
bool is_soo() const { return soo_rep_.is_soo(); }
int size(bool is_soo) const { return soo_rep_.size(is_soo); }
int Capacity(bool is_soo) const {
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
return is_soo ? kSooCapacityElements : soo_rep_.long_rep.capacity;
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
}
void set_size(bool is_soo, int size) {
ABSL_DCHECK_LE(size, Capacity(is_soo));
soo_rep_.set_size(is_soo, size);
}
// Swaps entire contents with "other". Should be called only if the caller can
// guarantee that both repeated fields are on the same arena or are on the
// heap. Swapping between different arenas is disallowed and caught by a
// ABSL_DCHECK (see API docs for details).
void UnsafeArenaSwap(RepeatedField* other);
// Copy constructs `n` instances in place into the array `dst`.
// This function is identical to `std::uninitialized_copy_n(src, n, dst)`
// except that we explicit declare the memory to not be aliased, which will
// result in `memcpy` code generation instead of `memmove` for trivial types.
static inline void UninitializedCopyN(const Element* PROTOBUF_RESTRICT src,
int n, Element* PROTOBUF_RESTRICT dst) {
std::uninitialized_copy_n(src, n, dst);
}
// Copy constructs `[begin, end)` instances in place into the array `dst`.
// See above `UninitializedCopyN()` function comments for more information.
template <typename Iter>
static inline void UninitializedCopy(Iter begin, Iter end,
Element* PROTOBUF_RESTRICT dst) {
std::uninitialized_copy(begin, end, dst);
}
// Destroys all elements in [begin, end).
// This function does nothing if `Element` is trivial.
static void Destroy(const Element* begin, const Element* end) {
if (!std::is_trivial<Element>::value) {
std::for_each(begin, end, [&](const Element& e) { e.~Element(); });
}
}
template <typename Iter>
void AddForwardIterator(Iter begin, Iter end);
template <typename Iter>
void AddInputIterator(Iter begin, Iter end);
// Reserves space to expand the field to at least the given size.
// If the array is grown, it will always be at least doubled in size.
// If `annotate_size` is true (the default), then this function will annotate
// the old container from `old_size` to `Capacity()` (unpoison memory)
// directly before it is being released, and annotate the new container from
// `Capacity()` to `old_size` (poison unused memory).
void Grow(bool was_soo, int old_size, int new_size);
void GrowNoAnnotate(bool was_soo, int old_size, int new_size);
// Annotates a change in size of this instance. This function should be called
// with (capacity, old_size) after new memory has been allocated and filled
// from previous memory, and UnpoisonBuffer() should be called right before
// (previously annotated) memory is released.
void AnnotateSize(int old_size, int new_size) const {
if (old_size != new_size) {
ABSL_ATTRIBUTE_UNUSED const bool is_soo = this->is_soo();
ABSL_ATTRIBUTE_UNUSED const Element* elem = unsafe_elements(is_soo);
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(elem, elem + Capacity(is_soo),
elem + old_size, elem + new_size);
if (new_size < old_size) {
ABSL_ANNOTATE_MEMORY_IS_UNINITIALIZED(
elem + new_size, (old_size - new_size) * sizeof(Element));
}
}
}
// Unpoisons the memory buffer.
void UnpoisonBuffer() const {
AnnotateSize(size(), Capacity());
if (is_soo()) {
// We need to manually unpoison the SOO buffer because in reflection for
// split repeated fields, we poison the whole SOO buffer even when we
// don't actually use the whole SOO buffer (e.g. for RepeatedField<bool>).
PROTOBUF_UNPOISON_MEMORY_REGION(soo_rep_.short_rep.data,
sizeof(soo_rep_.short_rep.data));
}
}
// Replaces size with new_size and returns the previous value of
// size. This function is intended to be the only place where
// size is modified, with the exception of `AddInputIterator()`
// where the size of added items is not known in advance.
inline int ExchangeCurrentSize(bool is_soo, int new_size) {
const int prev_size = size(is_soo);
AnnotateSize(prev_size, new_size);
set_size(is_soo, new_size);
return prev_size;
}
// Returns a pointer to elements array.
// pre-condition: Capacity() > 0.
Element* elements(bool is_soo) {
ABSL_DCHECK_GT(Capacity(is_soo), 0);
return unsafe_elements(is_soo);
}
const Element* elements(bool is_soo) const {
return const_cast<RepeatedField*>(this)->elements(is_soo);
}
// Returns a pointer to elements array if it exists; otherwise an invalid
// pointer is returned. This only happens for empty repeated fields, where you
// can't dereference this pointer anyway (it's empty).
Element* unsafe_elements(bool is_soo) {
return is_soo ? reinterpret_cast<Element*>(soo_rep_.short_rep.data)
: reinterpret_cast<Element*>(soo_rep_.long_rep.elements());
}
const Element* unsafe_elements(bool is_soo) const {
return const_cast<RepeatedField*>(this)->unsafe_elements(is_soo);
}
// Returns a pointer to the HeapRep struct.
// pre-condition: the HeapRep must have been allocated, ie !is_soo().
HeapRep* heap_rep() const {
ABSL_DCHECK(!is_soo());
return reinterpret_cast<HeapRep*>(soo_rep_.long_rep.elements() -
kHeapRepHeaderSize);
}
// Internal helper to delete all elements and deallocate the storage.
template <bool in_destructor = false>
void InternalDeallocate() {
ABSL_DCHECK(!is_soo());
const size_t bytes = Capacity(false) * sizeof(Element) + kHeapRepHeaderSize;
if (heap_rep()->arena == nullptr) {
internal::SizedDelete(heap_rep(), bytes);
} else if (!in_destructor) {
// If we are in the destructor, we might be being destroyed as part of
// the arena teardown. We can't try and return blocks to the arena then.
heap_rep()->arena->ReturnArrayMemory(heap_rep(), bytes);
}
}
// A note on the representation here (see also comment below for
// RepeatedPtrFieldBase's struct HeapRep):
//
// We maintain the same sizeof(RepeatedField) as before we added arena support
// so that we do not degrade performance by bloating memory usage. Directly
// adding an arena_ element to RepeatedField is quite costly. By using
// indirection in this way, we keep the same size when the RepeatedField is
// empty (common case), and add only an 8-byte header to the elements array
// when non-empty. We make sure to place the size fields directly in the
// RepeatedField class to avoid costly cache misses due to the indirection.
internal::SooRep soo_rep_{};
};
// implementation ====================================================
template <typename Element>
constexpr RepeatedField<Element>::RepeatedField() {
StaticValidityCheck();
#ifdef __cpp_lib_is_constant_evaluated
if (!std::is_constant_evaluated()) {
AnnotateSize(kSooCapacityElements, 0);
}
#endif // __cpp_lib_is_constant_evaluated
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena) : soo_rep_(arena) {
StaticValidityCheck();
AnnotateSize(kSooCapacityElements, 0);
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena,
const RepeatedField& rhs)
: soo_rep_(arena) {
StaticValidityCheck();
AnnotateSize(kSooCapacityElements, 0);
const bool rhs_is_soo = rhs.is_soo();
if (auto size = rhs.size(rhs_is_soo)) {
bool is_soo = true;
if (size > kSooCapacityElements) {
Grow(is_soo, 0, size);
is_soo = false;
}
ExchangeCurrentSize(is_soo, size);
UninitializedCopyN(rhs.elements(rhs_is_soo), size, unsafe_elements(is_soo));
}
}
template <typename Element>
template <typename Iter, typename>
RepeatedField<Element>::RepeatedField(Iter begin, Iter end) {
StaticValidityCheck();
AnnotateSize(kSooCapacityElements, 0);
Add(begin, end);
}
template <typename Element>
RepeatedField<Element>::~RepeatedField() {
StaticValidityCheck();
const bool is_soo = this->is_soo();
#ifndef NDEBUG
// Try to trigger segfault / asan failure in non-opt builds if arena_
// lifetime has ended before the destructor.
auto arena = GetArena(is_soo);
if (arena) (void)arena->SpaceAllocated();
#endif
const int size = this->size(is_soo);
if (size > 0) {
Element* elem = unsafe_elements(is_soo);
Destroy(elem, elem + size);
}
UnpoisonBuffer();
if (!is_soo) InternalDeallocate<true>();
}
template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
const RepeatedField& other) ABSL_ATTRIBUTE_LIFETIME_BOUND {
if (this != &other) CopyFrom(other);
return *this;
}
template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena, RepeatedField&& rhs)
: RepeatedField(arena) {
if (internal::CanMoveWithInternalSwap(arena, rhs.GetArena())) {
InternalSwap(&rhs);
} else {
// We don't just call Swap(&rhs) here because it would perform 3 copies if
// rhs is on a different arena.
CopyFrom(rhs);
}
}
template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
RepeatedField&& other) noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
// We don't just call Swap(&other) here because it would perform 3 copies if
// the two fields are on different arenas.
if (this != &other) {
if (internal::CanMoveWithInternalSwap(GetArena(), other.GetArena())) {
InternalSwap(&other);
} else {
CopyFrom(other);
}
}
return *this;
}
template <typename Element>
inline bool RepeatedField<Element>::empty() const {
return size() == 0;
}
template <typename Element>
inline int RepeatedField<Element>::size() const {
return size(is_soo());
}
template <typename Element>
inline int RepeatedField<Element>::Capacity() const {
return Capacity(is_soo());
}
template <typename Element>
inline void RepeatedField<Element>::AddAlreadyReserved(Element value) {
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_DCHECK_LT(old_size, Capacity(is_soo));
void* p = elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + 1);
::new (p) Element(std::move(value));
}
template <typename Element>
inline Element* RepeatedField<Element>::AddAlreadyReserved()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_DCHECK_LT(old_size, Capacity(is_soo));
// new (p) <TrivialType> compiles into nothing: this is intentional as this
// function is documented to return uninitialized data for trivial types.
void* p = elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + 1);
return ::new (p) Element;
}
template <typename Element>
inline Element* RepeatedField<Element>::AddNAlreadyReserved(int n)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_ATTRIBUTE_UNUSED const int capacity = Capacity(is_soo);
ABSL_DCHECK_GE(capacity - old_size, n) << capacity << ", " << old_size;
Element* p =
unsafe_elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + n);
for (Element *begin = p, *end = p + n; begin != end; ++begin) {
new (static_cast<void*>(begin)) Element;
}
return p;
}
template <typename Element>
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
ABSL_DCHECK_GE(new_size, 0);
bool is_soo = this->is_soo();
const int old_size = size(is_soo);
if (new_size > old_size) {
if (new_size > Capacity(is_soo)) {
Grow(is_soo, old_size, new_size);
is_soo = false;
}
Element* elem = elements(is_soo);
Element* first = elem + ExchangeCurrentSize(is_soo, new_size);
std::uninitialized_fill(first, elem + new_size, value);
} else if (new_size < old_size) {
Element* elem = unsafe_elements(is_soo);
Destroy(elem + new_size, elem + old_size);
ExchangeCurrentSize(is_soo, new_size);
}
}
template <typename Element>
inline const Element& RepeatedField<Element>::Get(int index) const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_DCHECK_GE(index, 0);
ABSL_DCHECK_LT(index, size());
return elements(is_soo())[index];
}
template <typename Element>
inline const Element& RepeatedField<Element>::at(int index) const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_CHECK_GE(index, 0);
ABSL_CHECK_LT(index, size());
return elements(is_soo())[index];
}
template <typename Element>
inline Element& RepeatedField<Element>::at(int index)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_CHECK_GE(index, 0);
ABSL_CHECK_LT(index, size());
return elements(is_soo())[index];
}
template <typename Element>
inline Element* RepeatedField<Element>::Mutable(int index)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_DCHECK_GE(index, 0);
ABSL_DCHECK_LT(index, size());
return &elements(is_soo())[index];
}
template <typename Element>
inline void RepeatedField<Element>::Set(int index, const Element& value) {
*Mutable(index) = value;
}
template <typename Element>
inline void RepeatedField<Element>::Add(Element value) {
bool is_soo = this->is_soo();
const int old_size = size(is_soo);
int capacity = Capacity(is_soo);
Element* elem = unsafe_elements(is_soo);
if (ABSL_PREDICT_FALSE(old_size == capacity)) {
Grow(is_soo, old_size, old_size + 1);
is_soo = false;
capacity = Capacity(is_soo);
elem = unsafe_elements(is_soo);
}
int new_size = old_size + 1;
void* p = elem + ExchangeCurrentSize(is_soo, new_size);
::new (p) Element(std::move(value));
// The below helps the compiler optimize dense loops.
// Note: we can't call functions in PROTOBUF_ASSUME so use local variables.
ABSL_ATTRIBUTE_UNUSED const bool final_is_soo = this->is_soo();
PROTOBUF_ASSUME(is_soo == final_is_soo);
ABSL_ATTRIBUTE_UNUSED const int final_size = size(is_soo);
PROTOBUF_ASSUME(new_size == final_size);
ABSL_ATTRIBUTE_UNUSED Element* const final_elements = unsafe_elements(is_soo);
PROTOBUF_ASSUME(elem == final_elements);
ABSL_ATTRIBUTE_UNUSED const int final_capacity = Capacity(is_soo);
PROTOBUF_ASSUME(capacity == final_capacity);
}
template <typename Element>
inline Element* RepeatedField<Element>::Add() ABSL_ATTRIBUTE_LIFETIME_BOUND {
bool is_soo = this->is_soo();
const int old_size = size(is_soo);
if (ABSL_PREDICT_FALSE(old_size == Capacity())) {
Grow(is_soo, old_size, old_size + 1);
is_soo = false;
}
void* p = unsafe_elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + 1);
return ::new (p) Element;
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::AddForwardIterator(Iter begin, Iter end) {
bool is_soo = this->is_soo();
const int old_size = size(is_soo);
int capacity = Capacity(is_soo);
Element* elem = unsafe_elements(is_soo);
int new_size = old_size + static_cast<int>(std::distance(begin, end));
if (ABSL_PREDICT_FALSE(new_size > capacity)) {
Grow(is_soo, old_size, new_size);
is_soo = false;
elem = unsafe_elements(is_soo);
capacity = Capacity(is_soo);
}
UninitializedCopy(begin, end, elem + ExchangeCurrentSize(is_soo, new_size));
// The below helps the compiler optimize dense loops.
// Note: we can't call functions in PROTOBUF_ASSUME so use local variables.
ABSL_ATTRIBUTE_UNUSED const bool final_is_soo = this->is_soo();
PROTOBUF_ASSUME(is_soo == final_is_soo);
ABSL_ATTRIBUTE_UNUSED const int final_size = size(is_soo);
PROTOBUF_ASSUME(new_size == final_size);
ABSL_ATTRIBUTE_UNUSED Element* const final_elements = unsafe_elements(is_soo);
PROTOBUF_ASSUME(elem == final_elements);
ABSL_ATTRIBUTE_UNUSED const int final_capacity = Capacity(is_soo);
PROTOBUF_ASSUME(capacity == final_capacity);
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::AddInputIterator(Iter begin, Iter end) {
bool is_soo = this->is_soo();
int size = this->size(is_soo);
int capacity = Capacity(is_soo);
Element* elem = unsafe_elements(is_soo);
Element* first = elem + size;
Element* last = elem + capacity;
UnpoisonBuffer();
while (begin != end) {
if (ABSL_PREDICT_FALSE(first == last)) {
size = first - elem;
GrowNoAnnotate(is_soo, size, size + 1);
is_soo = false;
elem = unsafe_elements(is_soo);
capacity = Capacity(is_soo);
first = elem + size;
last = elem + capacity;
}
::new (static_cast<void*>(first)) Element(*begin);
++begin;
++first;
}
const int new_size = first - elem;
set_size(is_soo, new_size);
AnnotateSize(capacity, new_size);
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::Add(Iter begin, Iter end) {
if (std::is_base_of<
std::forward_iterator_tag,
typename std::iterator_traits<Iter>::iterator_category>::value) {
AddForwardIterator(begin, end);
} else {
AddInputIterator(begin, end);
}
}
template <typename Element>
inline void RepeatedField<Element>::RemoveLast() {
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_DCHECK_GT(old_size, 0);
elements(is_soo)[old_size - 1].~Element();
ExchangeCurrentSize(is_soo, old_size - 1);
}
template <typename Element>
void RepeatedField<Element>::ExtractSubrange(int start, int num,
Element* elements) {
ABSL_DCHECK_GE(start, 0);
ABSL_DCHECK_GE(num, 0);
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_DCHECK_LE(start + num, old_size);
Element* elem = unsafe_elements(is_soo);
// Save the values of the removed elements if requested.
if (elements != nullptr) {
for (int i = 0; i < num; ++i) elements[i] = std::move(elem[i + start]);
}
// Slide remaining elements down to fill the gap.
if (num > 0) {
for (int i = start + num; i < old_size; ++i)
elem[i - num] = std::move(elem[i]);
Truncate(old_size - num);
}
}
template <typename Element>
inline void RepeatedField<Element>::Clear() {
const bool is_soo = this->is_soo();
Element* elem = unsafe_elements(is_soo);
Destroy(elem, elem + size(is_soo));
ExchangeCurrentSize(is_soo, 0);
}
template <typename Element>
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
ABSL_DCHECK_NE(&other, this);
const bool other_is_soo = other.is_soo();
if (auto other_size = other.size(other_is_soo)) {
const int old_size = size();
Reserve(old_size + other_size);
const bool is_soo = this->is_soo();
Element* dst =
elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + other_size);
UninitializedCopyN(other.elements(other_is_soo), other_size, dst);
}
}
template <typename Element>
inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
if (&other == this) return;
Clear();
MergeFrom(other);
}
template <typename Element>
template <typename Iter>
inline void RepeatedField<Element>::Assign(Iter begin, Iter end) {
Clear();
Add(begin, end);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
const_iterator position) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return erase(position, position + 1);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
const_iterator first, const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
size_type first_offset = first - cbegin();
if (first != last) {
Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin());
}
return begin() + first_offset;
}
template <typename Element>
inline Element* RepeatedField<Element>::mutable_data()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return unsafe_elements(is_soo());
}
template <typename Element>
inline const Element* RepeatedField<Element>::data() const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return unsafe_elements(is_soo());
}
template <typename Element>
inline void RepeatedField<Element>::InternalSwap(
RepeatedField* PROTOBUF_RESTRICT other) {
ABSL_DCHECK(this != other);
// We need to unpoison during the swap in case we're in SOO mode.
UnpoisonBuffer();
other->UnpoisonBuffer();
internal::memswap<sizeof(internal::SooRep)>(
reinterpret_cast<char*>(&this->soo_rep_),
reinterpret_cast<char*>(&other->soo_rep_));
AnnotateSize(Capacity(), size());
other->AnnotateSize(other->Capacity(), other->size());
}
template <typename Element>
void RepeatedField<Element>::Swap(RepeatedField* other) {
if (this == other) return;
Arena* arena = GetArena();
Arena* other_arena = other->GetArena();
if (internal::CanUseInternalSwap(arena, other_arena)) {
InternalSwap(other);
} else {
RepeatedField<Element> temp(other_arena);
temp.MergeFrom(*this);
CopyFrom(*other);
other->UnsafeArenaSwap(&temp);
}
}
template <typename Element>
void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
if (this == other) return;
ABSL_DCHECK_EQ(GetArena(), other->GetArena());
InternalSwap(other);
}
template <typename Element>
void RepeatedField<Element>::SwapElements(int index1, int index2) {
Element* elem = elements(is_soo());
using std::swap; // enable ADL with fallback
swap(elem[index1], elem[index2]);
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::begin()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return iterator(unsafe_elements(is_soo()));
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(unsafe_elements(is_soo()));
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_iterator(unsafe_elements(is_soo()));
}
template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
const bool is_soo = this->is_soo();
return iterator(unsafe_elements(is_soo) + size(is_soo));
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
const bool is_soo = this->is_soo();
return const_iterator(unsafe_elements(is_soo) + size(is_soo));
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
const bool is_soo = this->is_soo();
return const_iterator(unsafe_elements(is_soo) + size(is_soo));
}
template <typename Element>
inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
const int capacity = Capacity();
return capacity > kSooCapacityElements
? capacity * sizeof(Element) + kHeapRepHeaderSize
: 0;
}
namespace internal {
// Returns the new size for a reserved field based on its 'capacity' and the
// requested 'new_size'. The result is clamped to the closed interval:
// [internal::kMinRepeatedFieldAllocationSize,
// std::numeric_limits<int>::max()]
// Requires: new_size > capacity
template <typename T, int kHeapRepHeaderSize>
inline int CalculateReserveSize(int capacity, int new_size) {
constexpr int lower_limit =
RepeatedFieldLowerClampLimit<T, kHeapRepHeaderSize>();
if (new_size < lower_limit) {
// Clamp to smallest allowed size.
return lower_limit;
}
constexpr int kMaxSizeBeforeClamp =
(std::numeric_limits<int>::max() - kHeapRepHeaderSize) / 2;
if (PROTOBUF_PREDICT_FALSE(capacity > kMaxSizeBeforeClamp)) {
return std::numeric_limits<int>::max();
}
constexpr int kSooCapacityElements = SooCapacityElements(sizeof(T));
if (kSooCapacityElements > 0 && kSooCapacityElements < lower_limit) {
// In this case, we need to set capacity to 0 here to ensure power-of-two
// sized allocations.
if (capacity < lower_limit) capacity = 0;
} else {
ABSL_DCHECK(capacity == 0 || capacity >= lower_limit)
<< capacity << " " << lower_limit;
}
// We want to double the number of bytes, not the number of elements, to try
// to stay within power-of-two allocations.
// The allocation has kHeapRepHeaderSize + sizeof(T) * capacity.
int doubled_size = 2 * capacity + kHeapRepHeaderSize / sizeof(T);
return std::max(doubled_size, new_size);
}
} // namespace internal
template <typename Element>
void RepeatedField<Element>::Reserve(int new_size) {
const bool was_soo = is_soo();
if (ABSL_PREDICT_FALSE(new_size > Capacity(was_soo))) {
Grow(was_soo, size(was_soo), new_size);
}
}
// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
// amount of code bloat.
template <typename Element>
PROTOBUF_NOINLINE void RepeatedField<Element>::GrowNoAnnotate(bool was_soo,
int old_size,
int new_size) {
const int old_capacity = Capacity(was_soo);
ABSL_DCHECK_GT(new_size, old_capacity);
HeapRep* new_rep;
Arena* arena = GetArena();
new_size = internal::CalculateReserveSize<Element, kHeapRepHeaderSize>(
old_capacity, new_size);
ABSL_DCHECK_LE(static_cast<size_t>(new_size),
(std::numeric_limits<size_t>::max() - kHeapRepHeaderSize) /
sizeof(Element))
<< "Requested size is too large to fit into size_t.";
size_t bytes =
kHeapRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size);
if (arena == nullptr) {
ABSL_DCHECK_LE((bytes - kHeapRepHeaderSize) / sizeof(Element),
static_cast<size_t>(std::numeric_limits<int>::max()))
<< "Requested size is too large to fit element count into int.";
internal::SizedPtr res = internal::AllocateAtLeast(bytes);
size_t num_available =
std::min((res.n - kHeapRepHeaderSize) / sizeof(Element),
static_cast<size_t>(std::numeric_limits<int>::max()));
new_size = static_cast<int>(num_available);
new_rep = static_cast<HeapRep*>(res.p);
} else {
new_rep =
reinterpret_cast<HeapRep*>(Arena::CreateArray<char>(arena, bytes));
}
new_rep->arena = arena;
if (old_size > 0) {
Element* pnew = static_cast<Element*>(new_rep->elements());
Element* pold = elements(was_soo);
// TODO: add absl::is_trivially_relocatable<Element>
if (std::is_trivial<Element>::value) {
memcpy(static_cast<void*>(pnew), pold, old_size * sizeof(Element));
} else {
for (Element* end = pnew + old_size; pnew != end; ++pnew, ++pold) {
::new (static_cast<void*>(pnew)) Element(std::move(*pold));
pold->~Element();
}
}
}
if (!was_soo) InternalDeallocate();
soo_rep_.set_non_soo(was_soo, new_size, new_rep->elements());
}
// Ideally we would be able to use:
// template <bool annotate_size = true>
// void Grow();
// However, as explained in b/266411038#comment9, this causes issues
// in shared libraries for Youtube (and possibly elsewhere).
template <typename Element>
PROTOBUF_NOINLINE void RepeatedField<Element>::Grow(bool was_soo, int old_size,
int new_size) {
UnpoisonBuffer();
GrowNoAnnotate(was_soo, old_size, new_size);
AnnotateSize(Capacity(), old_size);
}
template <typename Element>
inline void RepeatedField<Element>::Truncate(int new_size) {
const bool is_soo = this->is_soo();
const int old_size = size(is_soo);
ABSL_DCHECK_LE(new_size, old_size);
if (new_size < old_size) {
Element* elem = unsafe_elements(is_soo);
Destroy(elem + new_size, elem + old_size);
ExchangeCurrentSize(is_soo, new_size);
}
}
template <>
PROTOBUF_EXPORT size_t
RepeatedField<absl::Cord>::SpaceUsedExcludingSelfLong() const;
// -------------------------------------------------------------------
// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepeatedPtrField. Typical usage would be:
//
// std::copy(some_sequence.begin(), some_sequence.end(),
// RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h
namespace internal {
// STL-like iterator implementation for RepeatedField. You should not
// refer to this class directly; use RepeatedField<T>::iterator instead.
//
// Note: All of the iterator operators *must* be inlined to avoid performance
// regressions. This is caused by the extern template declarations below (which
// are required because of the RepeatedField extern template declarations). If
// any of these functions aren't explicitly inlined (e.g. defined in the class),
// the compiler isn't allowed to inline them.
template <typename Element>
class RepeatedIterator {
private:
using traits =
std::iterator_traits<typename std::remove_const<Element>::type*>;
public:
// Note: value_type is never cv-qualified.
using value_type = typename traits::value_type;
using difference_type = typename traits::difference_type;
using pointer = Element*;
using reference = Element&;
using iterator_category = typename traits::iterator_category;
using iterator_concept = typename IteratorConceptSupport<traits>::tag;
constexpr RepeatedIterator() noexcept : it_(nullptr) {}
// Allows "upcasting" from RepeatedIterator<T**> to
// RepeatedIterator<const T*const*>.
template <typename OtherElement,
typename std::enable_if<std::is_convertible<
OtherElement*, pointer>::value>::type* = nullptr>
constexpr RepeatedIterator(
const RepeatedIterator<OtherElement>& other) noexcept
: it_(other.it_) {}
// dereferenceable
constexpr reference operator*() const noexcept { return *it_; }
constexpr pointer operator->() const noexcept { return it_; }
private:
// Helper alias to hide the internal type.
using iterator = RepeatedIterator<Element>;
public:
// {inc,dec}rementable
iterator& operator++() noexcept {
++it_;
return *this;
}
iterator operator++(int) noexcept { return iterator(it_++); }
iterator& operator--() noexcept {
--it_;
return *this;
}
iterator operator--(int) noexcept { return iterator(it_--); }
// equality_comparable
friend constexpr bool operator==(const iterator& x,
const iterator& y) noexcept {
return x.it_ == y.it_;
}
friend constexpr bool operator!=(const iterator& x,
const iterator& y) noexcept {
return x.it_ != y.it_;
}
// less_than_comparable
friend constexpr bool operator<(const iterator& x,
const iterator& y) noexcept {
return x.it_ < y.it_;
}
friend constexpr bool operator<=(const iterator& x,
const iterator& y) noexcept {
return x.it_ <= y.it_;
}
friend constexpr bool operator>(const iterator& x,
const iterator& y) noexcept {
return x.it_ > y.it_;
}
friend constexpr bool operator>=(const iterator& x,
const iterator& y) noexcept {
return x.it_ >= y.it_;
}
// addable, subtractable
iterator& operator+=(difference_type d) noexcept {
it_ += d;
return *this;
}
constexpr iterator operator+(difference_type d) const noexcept {
return iterator(it_ + d);
}
friend constexpr iterator operator+(const difference_type d,
iterator it) noexcept {
return it + d;
}
iterator& operator-=(difference_type d) noexcept {
it_ -= d;
return *this;
}
iterator constexpr operator-(difference_type d) const noexcept {
return iterator(it_ - d);
}
// indexable
constexpr reference operator[](difference_type d) const noexcept {
return it_[d];
}
// random access iterator
friend constexpr difference_type operator-(iterator it1,
iterator it2) noexcept {
return it1.it_ - it2.it_;
}
private:
template <typename OtherElement>
friend class RepeatedIterator;
// Allow construction from RepeatedField.
friend class RepeatedField<value_type>;
explicit RepeatedIterator(pointer it) noexcept : it_(it) {}
// The internal iterator.
pointer it_;
};
// A back inserter for RepeatedField objects.
template <typename T>
class RepeatedFieldBackInsertIterator {
public:
using iterator_category = std::output_iterator_tag;
using value_type = T;
using pointer = void;
using reference = void;
using difference_type = std::ptrdiff_t;
explicit RepeatedFieldBackInsertIterator(
RepeatedField<T>* const mutable_field)
: field_(mutable_field) {}
RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
field_->Add(value);
return *this;
}
RepeatedFieldBackInsertIterator<T>& operator*() { return *this; }
RepeatedFieldBackInsertIterator<T>& operator++() { return *this; }
RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedField<T>* field_;
};
} // namespace internal
// Provides a back insert iterator for RepeatedField instances,
// similar to std::back_inserter().
template <typename T>
internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter(
RepeatedField<T>* const mutable_field) {
return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
}
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__