313 lines
8.5 KiB
C
313 lines
8.5 KiB
C
|
/**********************************************************************
|
||
|
*
|
||
|
* GEOS - Geometry Engine Open Source
|
||
|
* http://geos.osgeo.org
|
||
|
*
|
||
|
* Copyright (C) 2012 Excensus LLC.
|
||
|
*
|
||
|
* This is free software; you can redistribute and/or modify it under
|
||
|
* the terms of the GNU Lesser General Licence as published
|
||
|
* by the Free Software Foundation.
|
||
|
* See the COPYING file for more information.
|
||
|
*
|
||
|
**********************************************************************
|
||
|
*
|
||
|
* Last port: triangulate/quadedge/Vertex.java r705
|
||
|
*
|
||
|
**********************************************************************/
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <memory>
|
||
|
#include <cstring>
|
||
|
|
||
|
#include <geos/geom/Coordinate.h>
|
||
|
#include <geos/algorithm/HCoordinate.h>
|
||
|
#include <geos/triangulate/quadedge/TrianglePredicate.h>
|
||
|
|
||
|
|
||
|
//fwd declarations
|
||
|
namespace geos {
|
||
|
namespace triangulate {
|
||
|
namespace quadedge {
|
||
|
class QuadEdge;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
namespace geos {
|
||
|
namespace triangulate { //geos.triangulate
|
||
|
namespace quadedge { //geos.triangulate.quadedge
|
||
|
|
||
|
/** \brief
|
||
|
* Models a site (node) in a QuadEdgeSubdivision.
|
||
|
*
|
||
|
* The sites can be points on a line string representing a linear site.
|
||
|
*
|
||
|
* The vertex can be considered as a vector with a norm, length, inner product, cross
|
||
|
* product, etc. Additionally, point relations (e.g., is a point to the left of a line, the circle
|
||
|
* defined by this point and two others, etc.) are also defined in this class.
|
||
|
*
|
||
|
* It is common to want to attach user-defined data to the vertices of a subdivision.
|
||
|
* One way to do this is to subclass `Vertex` to carry any desired information.
|
||
|
*
|
||
|
* @author JTS: David Skea
|
||
|
* @author JTS: Martin Davis
|
||
|
* @author Benjamin Campbell
|
||
|
* */
|
||
|
|
||
|
class GEOS_DLL Vertex {
|
||
|
public:
|
||
|
static const int LEFT = 0;
|
||
|
static const int RIGHT = 1;
|
||
|
static const int BEYOND = 2;
|
||
|
static const int BEHIND = 3;
|
||
|
static const int BETWEEN = 4;
|
||
|
static const int ORIGIN = 5;
|
||
|
static const int DESTINATION = 6;
|
||
|
private:
|
||
|
geom::Coordinate p;
|
||
|
|
||
|
public:
|
||
|
Vertex(double _x, double _y);
|
||
|
|
||
|
Vertex(double _x, double _y, double _z);
|
||
|
|
||
|
Vertex(const geom::Coordinate& _p);
|
||
|
|
||
|
Vertex();
|
||
|
~Vertex() {};
|
||
|
|
||
|
inline double
|
||
|
getX() const
|
||
|
{
|
||
|
return p.x;
|
||
|
}
|
||
|
|
||
|
inline double
|
||
|
getY() const
|
||
|
{
|
||
|
return p.y;
|
||
|
}
|
||
|
|
||
|
inline double
|
||
|
getZ() const
|
||
|
{
|
||
|
return p.z;
|
||
|
}
|
||
|
|
||
|
inline void
|
||
|
setZ(double _z)
|
||
|
{
|
||
|
p.z = _z;
|
||
|
}
|
||
|
|
||
|
inline const geom::Coordinate&
|
||
|
getCoordinate() const
|
||
|
{
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
inline bool
|
||
|
equals(const Vertex& _x) const
|
||
|
{
|
||
|
return p.equals2D(_x.p);
|
||
|
}
|
||
|
|
||
|
inline bool
|
||
|
equals(const Vertex& _x, double tolerance) const
|
||
|
{
|
||
|
if(p.distance(_x.getCoordinate()) < tolerance) {
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int classify(const Vertex& p0, const Vertex& p1);
|
||
|
|
||
|
/**
|
||
|
* Computes the cross product k = u X v.
|
||
|
*
|
||
|
* @param v a vertex
|
||
|
* @return returns the magnitude of u X v
|
||
|
*/
|
||
|
inline double
|
||
|
crossProduct(const Vertex& v) const
|
||
|
{
|
||
|
return (p.x * v.getY() - p.y * v.getX());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the inner or dot product
|
||
|
*
|
||
|
* @param v a vertex
|
||
|
* @return returns the dot product u.v
|
||
|
*/
|
||
|
inline double
|
||
|
dot(Vertex v) const
|
||
|
{
|
||
|
return (p.x * v.getX() + p.y * v.getY());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the scalar product c(v)
|
||
|
*
|
||
|
* @param c scaling factor
|
||
|
* @return returns the scaled vector
|
||
|
*/
|
||
|
inline std::unique_ptr<Vertex>
|
||
|
times(double c) const
|
||
|
{
|
||
|
return std::unique_ptr<Vertex>(new Vertex(c * p.x, c * p.y));
|
||
|
}
|
||
|
|
||
|
/* Vector addition */
|
||
|
inline std::unique_ptr<Vertex>
|
||
|
sum(Vertex v) const
|
||
|
{
|
||
|
return std::unique_ptr<Vertex>(new Vertex(p.x + v.getX(), p.y + v.getY()));
|
||
|
}
|
||
|
|
||
|
/* and subtraction */
|
||
|
inline std::unique_ptr<Vertex>
|
||
|
sub(const Vertex& v) const
|
||
|
{
|
||
|
return std::unique_ptr<Vertex>(new Vertex(p.x - v.getX(), p.y - v.getY()));
|
||
|
}
|
||
|
|
||
|
/* magnitude of vector */
|
||
|
inline double
|
||
|
magn() const
|
||
|
{
|
||
|
return (std::sqrt(p.x * p.x + p.y * p.y));
|
||
|
}
|
||
|
|
||
|
/* returns k X v (cross product). this is a vector perpendicular to v */
|
||
|
inline std::unique_ptr<Vertex>
|
||
|
cross() const
|
||
|
{
|
||
|
return std::unique_ptr<Vertex>(new Vertex(p.y, -p.x));
|
||
|
}
|
||
|
|
||
|
/** ************************************************************* */
|
||
|
/***********************************************************************************************
|
||
|
* Geometric primitives /
|
||
|
**********************************************************************************************/
|
||
|
|
||
|
/**
|
||
|
* Tests if the vertex is inside the circle defined by
|
||
|
* the triangle with vertices a, b, c (oriented counter-clockwise).
|
||
|
*
|
||
|
* @param a a vertex of the triangle
|
||
|
* @param b a vertex of the triangle
|
||
|
* @param c a vertex of the triangle
|
||
|
* @return true if this vertex is in the circumcircle of (a,b,c)
|
||
|
*/
|
||
|
bool isInCircle(const Vertex& a, const Vertex& b, const Vertex& c) const {
|
||
|
return triangulate::quadedge::TrianglePredicate::isInCircleRobust(a.p, b.p, c.p, this->p) == geom::Location::INTERIOR;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Tests whether the triangle formed by this vertex and two
|
||
|
* other vertices is in CCW orientation.
|
||
|
*
|
||
|
* @param b a vertex
|
||
|
* @param c a vertex
|
||
|
* @returns true if the triangle is oriented CCW
|
||
|
*/
|
||
|
inline bool
|
||
|
isCCW(const Vertex& b, const Vertex& c) const
|
||
|
{
|
||
|
// check if signed area is positive
|
||
|
return (b.p.x - p.x) * (c.p.y - p.y)
|
||
|
> (b.p.y - p.y) * (c.p.x - p.x);
|
||
|
}
|
||
|
|
||
|
bool rightOf(const QuadEdge& e) const;
|
||
|
bool leftOf(const QuadEdge& e) const;
|
||
|
|
||
|
private:
|
||
|
static std::unique_ptr<algorithm::HCoordinate> bisector(const Vertex& a, const Vertex& b);
|
||
|
|
||
|
inline double
|
||
|
distance(const Vertex& v1, const Vertex& v2)
|
||
|
{
|
||
|
return std::sqrt(pow(v2.getX() - v1.getX(), 2.0) +
|
||
|
pow(v2.getY() - v1.getY(), 2.0));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the value of the ratio of the circumradius to shortest edge. If smaller than some
|
||
|
* given tolerance B, the associated triangle is considered skinny. For an equal lateral
|
||
|
* triangle this value is 0.57735. The ratio is related to the minimum triangle angle theta by:
|
||
|
* circumRadius/shortestEdge = 1/(2sin(theta)).
|
||
|
*
|
||
|
* @param b second vertex of the triangle
|
||
|
* @param c third vertex of the triangle
|
||
|
* @return ratio of circumradius to shortest edge.
|
||
|
*/
|
||
|
double circumRadiusRatio(const Vertex& b, const Vertex& c);
|
||
|
|
||
|
/**
|
||
|
* returns a new vertex that is mid-way between this vertex and another end point.
|
||
|
*
|
||
|
* @param a the other end point.
|
||
|
* @return the point mid-way between this and that.
|
||
|
*/
|
||
|
std::unique_ptr<Vertex> midPoint(const Vertex& a);
|
||
|
|
||
|
/**
|
||
|
* Computes the centre of the circumcircle of this vertex and two others.
|
||
|
*
|
||
|
* @param b
|
||
|
* @param c
|
||
|
* @return the Coordinate which is the circumcircle of the 3 points.
|
||
|
*/
|
||
|
std::unique_ptr<Vertex> circleCenter(const Vertex& b, const Vertex& c) const;
|
||
|
|
||
|
/**
|
||
|
* For this vertex enclosed in a triangle defined by three vertices v0, v1 and v2, interpolate
|
||
|
* a z value from the surrounding vertices.
|
||
|
*/
|
||
|
double interpolateZValue(const Vertex& v0, const Vertex& v1, const Vertex& v2) const;
|
||
|
|
||
|
/**
|
||
|
* Interpolates the Z-value (height) of a point enclosed in a triangle
|
||
|
* whose vertices all have Z values.
|
||
|
* The containing triangle must not be degenerate
|
||
|
* (in other words, the three vertices must enclose a
|
||
|
* non-zero area).
|
||
|
*
|
||
|
* @param p the point to interpolate the Z value of
|
||
|
* @param v0 a vertex of a triangle containing the p
|
||
|
* @param v1 a vertex of a triangle containing the p
|
||
|
* @param v2 a vertex of a triangle containing the p
|
||
|
* @return the interpolated Z-value (height) of the point
|
||
|
*/
|
||
|
static double interpolateZ(const geom::Coordinate& p, const geom::Coordinate& v0,
|
||
|
const geom::Coordinate& v1, const geom::Coordinate& v2);
|
||
|
|
||
|
/**
|
||
|
* Computes the interpolated Z-value for a point p lying on the segment p0-p1
|
||
|
*
|
||
|
* @param p
|
||
|
* @param p0
|
||
|
* @param p1
|
||
|
* @return the interpolated Z value
|
||
|
*/
|
||
|
static double interpolateZ(const geom::Coordinate& p, const geom::Coordinate& p0,
|
||
|
const geom::Coordinate& p1);
|
||
|
};
|
||
|
|
||
|
inline bool
|
||
|
operator<(const Vertex& v1, const Vertex& v2)
|
||
|
{
|
||
|
return v1.getCoordinate() < v2.getCoordinate();
|
||
|
}
|
||
|
|
||
|
} //namespace geos.triangulate.quadedge
|
||
|
} //namespace geos.triangulate
|
||
|
} //namespace geos
|
||
|
|