DYT/Tool/OpenSceneGraph-3.6.5/include/draco/compression/entropy/rans_symbol_encoder.h

291 lines
11 KiB
C
Raw Normal View History

2024-12-24 23:49:36 +00:00
// Copyright 2016 The Draco Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#ifndef DRACO_COMPRESSION_ENTROPY_RANS_SYMBOL_ENCODER_H_
#define DRACO_COMPRESSION_ENTROPY_RANS_SYMBOL_ENCODER_H_
#include <algorithm>
#include <cmath>
#include <cstring>
#include "draco/compression/entropy/ans.h"
#include "draco/compression/entropy/rans_symbol_coding.h"
#include "draco/core/encoder_buffer.h"
#include "draco/core/varint_encoding.h"
namespace draco {
// A helper class for encoding symbols using the rANS algorithm (see ans.h).
// The class can be used to initialize and encode probability table needed by
// rANS, and to perform encoding of symbols into the provided EncoderBuffer.
template <int unique_symbols_bit_length_t>
class RAnsSymbolEncoder {
public:
RAnsSymbolEncoder()
: num_symbols_(0), num_expected_bits_(0), buffer_offset_(0) {}
// Creates a probability table needed by the rANS library and encode it into
// the provided buffer.
bool Create(const uint64_t *frequencies, int num_symbols,
EncoderBuffer *buffer);
void StartEncoding(EncoderBuffer *buffer);
void EncodeSymbol(uint32_t symbol) {
ans_.rans_write(&probability_table_[symbol]);
}
void EndEncoding(EncoderBuffer *buffer);
// rANS requires to encode the input symbols in the reverse order.
static constexpr bool needs_reverse_encoding() { return true; }
private:
// Functor used for sorting symbol ids according to their probabilities.
// The functor sorts symbol indices that index an underlying map between
// symbol ids and their probabilities. We don't sort the probability table
// directly, because that would require an additional indirection during the
// EncodeSymbol() function.
struct ProbabilityLess {
explicit ProbabilityLess(const std::vector<rans_sym> *probs)
: probabilities(probs) {}
bool operator()(int i, int j) const {
return probabilities->at(i).prob < probabilities->at(j).prob;
}
const std::vector<rans_sym> *probabilities;
};
// Encodes the probability table into the output buffer.
bool EncodeTable(EncoderBuffer *buffer);
static constexpr int rans_precision_bits_ =
ComputeRAnsPrecisionFromUniqueSymbolsBitLength(
unique_symbols_bit_length_t);
static constexpr int rans_precision_ = 1 << rans_precision_bits_;
std::vector<rans_sym> probability_table_;
// The number of symbols in the input alphabet.
uint32_t num_symbols_;
// Expected number of bits that is needed to encode the input.
uint64_t num_expected_bits_;
RAnsEncoder<rans_precision_bits_> ans_;
// Initial offset of the encoder buffer before any ans data was encoded.
uint64_t buffer_offset_;
};
template <int unique_symbols_bit_length_t>
bool RAnsSymbolEncoder<unique_symbols_bit_length_t>::Create(
const uint64_t *frequencies, int num_symbols, EncoderBuffer *buffer) {
// Compute the total of the input frequencies.
uint64_t total_freq = 0;
int max_valid_symbol = 0;
for (int i = 0; i < num_symbols; ++i) {
total_freq += frequencies[i];
if (frequencies[i] > 0) {
max_valid_symbol = i;
}
}
num_symbols = max_valid_symbol + 1;
num_symbols_ = num_symbols;
probability_table_.resize(num_symbols);
const double total_freq_d = static_cast<double>(total_freq);
const double rans_precision_d = static_cast<double>(rans_precision_);
// Compute probabilities by rescaling the normalized frequencies into interval
// [1, rans_precision - 1]. The total probability needs to be equal to
// rans_precision.
int total_rans_prob = 0;
for (int i = 0; i < num_symbols; ++i) {
const uint64_t freq = frequencies[i];
// Normalized probability.
const double prob = static_cast<double>(freq) / total_freq_d;
// RAns probability in range of [1, rans_precision - 1].
uint32_t rans_prob = static_cast<uint32_t>(prob * rans_precision_d + 0.5f);
if (rans_prob == 0 && freq > 0) {
rans_prob = 1;
}
probability_table_[i].prob = rans_prob;
total_rans_prob += rans_prob;
}
// Because of rounding errors, the total precision may not be exactly accurate
// and we may need to adjust the entries a little bit.
if (total_rans_prob != rans_precision_) {
std::vector<int> sorted_probabilities(num_symbols);
for (int i = 0; i < num_symbols; ++i) {
sorted_probabilities[i] = i;
}
std::stable_sort(sorted_probabilities.begin(), sorted_probabilities.end(),
ProbabilityLess(&probability_table_));
if (total_rans_prob < rans_precision_) {
// This happens rather infrequently, just add the extra needed precision
// to the most frequent symbol.
probability_table_[sorted_probabilities.back()].prob +=
rans_precision_ - total_rans_prob;
} else {
// We have over-allocated the precision, which is quite common.
// Rescale the probabilities of all symbols.
int32_t error = total_rans_prob - rans_precision_;
while (error > 0) {
const double act_total_prob_d = static_cast<double>(total_rans_prob);
const double act_rel_error_d = rans_precision_d / act_total_prob_d;
for (int j = num_symbols - 1; j > 0; --j) {
int symbol_id = sorted_probabilities[j];
if (probability_table_[symbol_id].prob <= 1) {
if (j == num_symbols - 1) {
return false; // Most frequent symbol would be empty.
}
break;
}
const int32_t new_prob = static_cast<int32_t>(
floor(act_rel_error_d *
static_cast<double>(probability_table_[symbol_id].prob)));
int32_t fix = probability_table_[symbol_id].prob - new_prob;
if (fix == 0u) {
fix = 1;
}
if (fix >= static_cast<int32_t>(probability_table_[symbol_id].prob)) {
fix = probability_table_[symbol_id].prob - 1;
}
if (fix > error) {
fix = error;
}
probability_table_[symbol_id].prob -= fix;
total_rans_prob -= fix;
error -= fix;
if (total_rans_prob == rans_precision_) {
break;
}
}
}
}
}
// Compute the cumulative probability (cdf).
uint32_t total_prob = 0;
for (int i = 0; i < num_symbols; ++i) {
probability_table_[i].cum_prob = total_prob;
total_prob += probability_table_[i].prob;
}
if (total_prob != rans_precision_) {
return false;
}
// Estimate the number of bits needed to encode the input.
// From Shannon entropy the total number of bits N is:
// N = -sum{i : all_symbols}(F(i) * log2(P(i)))
// where P(i) is the normalized probability of symbol i and F(i) is the
// symbol's frequency in the input data.
double num_bits = 0;
for (int i = 0; i < num_symbols; ++i) {
if (probability_table_[i].prob == 0) {
continue;
}
const double norm_prob =
static_cast<double>(probability_table_[i].prob) / rans_precision_d;
num_bits += static_cast<double>(frequencies[i]) * log2(norm_prob);
}
num_expected_bits_ = static_cast<uint64_t>(ceil(-num_bits));
if (!EncodeTable(buffer)) {
return false;
}
return true;
}
template <int unique_symbols_bit_length_t>
bool RAnsSymbolEncoder<unique_symbols_bit_length_t>::EncodeTable(
EncoderBuffer *buffer) {
EncodeVarint(num_symbols_, buffer);
// Use varint encoding for the probabilities (first two bits represent the
// number of bytes used - 1).
for (uint32_t i = 0; i < num_symbols_; ++i) {
const uint32_t prob = probability_table_[i].prob;
int num_extra_bytes = 0;
if (prob >= (1 << 6)) {
num_extra_bytes++;
if (prob >= (1 << 14)) {
num_extra_bytes++;
if (prob >= (1 << 22)) {
// The maximum number of precision bits is 20 so we should not really
// get to this point.
return false;
}
}
}
if (prob == 0) {
// When the probability of the symbol is 0, set the first two bits to 1
// (unique identifier) and use the remaining 6 bits to store the offset
// to the next symbol with non-zero probability.
uint32_t offset = 0;
for (; offset < (1 << 6) - 1; ++offset) {
// Note: we don't have to check whether the next symbol id is larger
// than num_symbols_ because we know that the last symbol always has
// non-zero probability.
const uint32_t next_prob = probability_table_[i + offset + 1].prob;
if (next_prob > 0) {
break;
}
}
buffer->Encode(static_cast<uint8_t>((offset << 2) | 3));
i += offset;
} else {
// Encode the first byte (including the number of extra bytes).
buffer->Encode(static_cast<uint8_t>((prob << 2) | (num_extra_bytes & 3)));
// Encode the extra bytes.
for (int b = 0; b < num_extra_bytes; ++b) {
buffer->Encode(static_cast<uint8_t>(prob >> (8 * (b + 1) - 2)));
}
}
}
return true;
}
template <int unique_symbols_bit_length_t>
void RAnsSymbolEncoder<unique_symbols_bit_length_t>::StartEncoding(
EncoderBuffer *buffer) {
// Allocate extra storage just in case.
const uint64_t required_bits = 2 * num_expected_bits_ + 32;
buffer_offset_ = buffer->size();
const int64_t required_bytes = (required_bits + 7) / 8;
buffer->Resize(buffer_offset_ + required_bytes + sizeof(buffer_offset_));
uint8_t *const data =
reinterpret_cast<uint8_t *>(const_cast<char *>(buffer->data()));
ans_.write_init(data + buffer_offset_);
}
template <int unique_symbols_bit_length_t>
void RAnsSymbolEncoder<unique_symbols_bit_length_t>::EndEncoding(
EncoderBuffer *buffer) {
char *const src = const_cast<char *>(buffer->data()) + buffer_offset_;
// TODO(fgalligan): Look into changing this to uint32_t as write_end()
// returns an int.
const uint64_t bytes_written = static_cast<uint64_t>(ans_.write_end());
EncoderBuffer var_size_buffer;
EncodeVarint(bytes_written, &var_size_buffer);
const uint32_t size_len = static_cast<uint32_t>(var_size_buffer.size());
char *const dst = src + size_len;
memmove(dst, src, bytes_written);
// Store the size of the encoded data.
memcpy(src, var_size_buffer.data(), size_len);
// Resize the buffer to match the number of encoded bytes.
buffer->Resize(buffer_offset_ + bytes_written + size_len);
}
} // namespace draco
#endif // DRACO_COMPRESSION_ENTROPY_RANS_SYMBOL_ENCODER_H_