DYT/Tool/OpenSceneGraph-3.6.5/include/google/protobuf/message_lite.h

1459 lines
54 KiB
C
Raw Normal View History

2024-12-24 23:49:36 +00:00
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Authors: wink@google.com (Wink Saville),
// kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// Defines MessageLite, the abstract interface implemented by all (lite
// and non-lite) protocol message objects.
#ifndef GOOGLE_PROTOBUF_MESSAGE_LITE_H__
#define GOOGLE_PROTOBUF_MESSAGE_LITE_H__
#include <climits>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <iosfwd>
#include <new>
#include <string>
#include <type_traits>
#include "absl/base/attributes.h"
#include "absl/base/casts.h"
#include "absl/log/absl_check.h"
#include "absl/numeric/bits.h"
#include "absl/strings/cord.h"
#include "absl/strings/string_view.h"
#include "google/protobuf/arena.h"
#include "google/protobuf/explicitly_constructed.h"
#include "google/protobuf/internal_visibility.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/metadata_lite.h"
#include "google/protobuf/port.h"
// clang-format off
#include "google/protobuf/port_def.inc"
// clang-format on
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
template <typename T>
class RepeatedPtrField;
class FastReflectionMessageMutator;
class FastReflectionStringSetter;
class Reflection;
class Descriptor;
class AssignDescriptorsHelper;
class MessageLite;
namespace io {
class CodedInputStream;
class CodedOutputStream;
class ZeroCopyInputStream;
class ZeroCopyOutputStream;
} // namespace io
namespace compiler {
namespace cpp {
class MessageTableTester;
} // namespace cpp
} // namespace compiler
namespace internal {
class MessageCreator {
public:
using Func = void* (*)(const void*, void*, Arena*);
// Use -1/0/1 to be able to use <0, ==0, >0
enum Tag : int8_t {
kFunc = -1,
kZeroInit = 0,
kMemcpy = 1,
};
constexpr MessageCreator()
: allocation_size_(), tag_(), alignment_(), arena_bits_(uintptr_t{}) {}
static constexpr MessageCreator ZeroInit(uint32_t allocation_size,
uint8_t alignment,
uintptr_t arena_bits = 0) {
MessageCreator out;
out.allocation_size_ = allocation_size;
out.tag_ = kZeroInit;
out.alignment_ = alignment;
out.arena_bits_ = arena_bits;
return out;
}
static constexpr MessageCreator CopyInit(uint32_t allocation_size,
uint8_t alignment,
uintptr_t arena_bits = 0) {
MessageCreator out;
out.allocation_size_ = allocation_size;
out.tag_ = kMemcpy;
out.alignment_ = alignment;
out.arena_bits_ = arena_bits;
return out;
}
constexpr MessageCreator(Func func, uint32_t allocation_size,
uint8_t alignment)
: allocation_size_(allocation_size),
tag_(kFunc),
alignment_(alignment),
func_(func) {}
// Template for testing.
template <bool test_call = false, typename MessageLite>
MessageLite* New(const MessageLite* prototype_for_func,
const MessageLite* prototype_for_copy, Arena* arena) const;
template <bool test_call = false, typename MessageLite>
MessageLite* PlacementNew(const MessageLite* prototype_for_func,
const MessageLite* prototype_for_copy, void* mem,
Arena* arena) const;
Tag tag() const { return tag_; }
uint32_t allocation_size() const { return allocation_size_; }
uint8_t alignment() const { return alignment_; }
uintptr_t arena_bits() const {
ABSL_DCHECK_NE(+tag(), +kFunc);
return arena_bits_;
}
private:
uint32_t allocation_size_;
Tag tag_;
uint8_t alignment_;
union {
Func func_;
uintptr_t arena_bits_;
};
};
// Allow easy change to regular int on platforms where the atomic might have a
// perf impact.
//
// CachedSize is like std::atomic<int> but with some important changes:
//
// 1) CachedSize uses Get / Set rather than load / store.
// 2) CachedSize always uses relaxed ordering.
// 3) CachedSize is assignable and copy-constructible.
// 4) CachedSize has a constexpr default constructor, and a constexpr
// constructor that takes an int argument.
// 5) If the compiler supports the __atomic_load_n / __atomic_store_n builtins,
// then CachedSize is trivially copyable.
//
// Developed at https://godbolt.org/z/vYcx7zYs1 ; supports gcc, clang, MSVC.
class PROTOBUF_EXPORT CachedSize {
private:
using Scalar = int;
public:
constexpr CachedSize() noexcept : atom_(Scalar{}) {}
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr CachedSize(Scalar desired) noexcept : atom_(desired) {}
#if PROTOBUF_BUILTIN_ATOMIC
constexpr CachedSize(const CachedSize& other) = default;
Scalar Get() const noexcept {
return __atomic_load_n(&atom_, __ATOMIC_RELAXED);
}
void Set(Scalar desired) const noexcept {
// Avoid writing the value when it is zero. This prevents writing to global
// default instances, which might be in readonly memory.
if (ABSL_PREDICT_FALSE(desired == 0)) {
if (Get() == 0) return;
}
__atomic_store_n(&atom_, desired, __ATOMIC_RELAXED);
}
void SetNonZero(Scalar desired) const noexcept {
__atomic_store_n(&atom_, desired, __ATOMIC_RELAXED);
}
#else
CachedSize(const CachedSize& other) noexcept : atom_(other.Get()) {}
CachedSize& operator=(const CachedSize& other) noexcept {
Set(other.Get());
return *this;
}
Scalar Get() const noexcept { //
return atom_.load(std::memory_order_relaxed);
}
void Set(Scalar desired) const noexcept {
// Avoid writing the value when it is zero. This prevents writing to global
// default instances, which might be in readonly memory.
if (ABSL_PREDICT_FALSE(desired == 0)) {
if (Get() == 0) return;
}
atom_.store(desired, std::memory_order_relaxed);
}
void SetNonZero(Scalar desired) const noexcept {
atom_.store(desired, std::memory_order_relaxed);
}
#endif
private:
#if PROTOBUF_BUILTIN_ATOMIC
mutable Scalar atom_;
#else
mutable std::atomic<Scalar> atom_;
#endif
};
// TODO: Upgrade to `auto` parameters when we drop C++14 support.
template <typename T, const T* kDefault>
struct GeneratedMessageTraitsT {
static constexpr const void* default_instance() { return kDefault; }
static constexpr auto StrongPointer() { return default_instance(); }
};
template <typename T>
struct FallbackMessageTraits {
static const void* default_instance() { return T::default_instance(); }
// We can't make a constexpr pointer to the default, so use a function pointer
// instead.
static constexpr auto StrongPointer() { return &T::default_instance; }
};
// Traits for message T.
// We use a class scope variable template, which can be specialized with a
// different type in a non-defining declaration.
// We need non-defining declarations because we might have duplicates of the
// same trait specification on each dependent coming from different .proto.h
// files.
struct MessageTraitsImpl {
template <typename T>
static FallbackMessageTraits<T> value;
};
template <typename T>
using MessageTraits = decltype(MessageTraitsImpl::value<T>);
// For MessageLite to friend.
auto GetClassData(const MessageLite& msg);
class SwapFieldHelper;
// See parse_context.h for explanation
class ParseContext;
struct DescriptorTable;
class DescriptorPoolExtensionFinder;
class ExtensionSet;
class LazyField;
class RepeatedPtrFieldBase;
class TcParser;
struct TcParseTableBase;
class WireFormatLite;
class WeakFieldMap;
class RustMapHelper;
// We compute sizes as size_t but cache them as int. This function converts a
// computed size to a cached size. Since we don't proceed with serialization
// if the total size was > INT_MAX, it is not important what this function
// returns for inputs > INT_MAX. However this case should not error or
// ABSL_CHECK-fail, because the full size_t resolution is still returned from
// ByteSizeLong() and checked against INT_MAX; we can catch the overflow
// there.
inline int ToCachedSize(size_t size) { return static_cast<int>(size); }
// We mainly calculate sizes in terms of size_t, but some functions that
// compute sizes return "int". These int sizes are expected to always be
// positive. This function is more efficient than casting an int to size_t
// directly on 64-bit platforms because it avoids making the compiler emit a
// sign extending instruction, which we don't want and don't want to pay for.
inline size_t FromIntSize(int size) {
// Convert to unsigned before widening so sign extension is not necessary.
return static_cast<unsigned int>(size);
}
// For cases where a legacy function returns an integer size. We ABSL_DCHECK()
// that the conversion will fit within an integer; if this is false then we
// are losing information.
inline int ToIntSize(size_t size) {
ABSL_DCHECK_LE(size, static_cast<size_t>(INT_MAX));
return static_cast<int>(size);
}
#if defined(PROTOBUF_FUTURE_STRING_VIEW_RETURN_TYPE)
using GetTypeNameReturnType = absl::string_view;
#else
using GetTypeNameReturnType = std::string;
#endif
// Default empty string object. Don't use this directly. Instead, call
// GetEmptyString() to get the reference. This empty string is aligned with a
// minimum alignment of 8 bytes to match the requirement of ArenaStringPtr.
PROTOBUF_EXPORT extern ExplicitlyConstructedArenaString
fixed_address_empty_string;
PROTOBUF_EXPORT constexpr const std::string& GetEmptyStringAlreadyInited() {
return fixed_address_empty_string.get();
}
PROTOBUF_EXPORT size_t StringSpaceUsedExcludingSelfLong(const std::string& str);
struct ClassDataFull;
// Note: The order of arguments in the functions is chosen so that it has
// the same ABI as the member function that calls them. Eg the `this`
// pointer becomes the first argument in the free function.
//
// Future work:
// We could save more data by omitting any optional pointer that would
// otherwise be null. We can have some metadata in ClassData telling us if we
// have them and their offset.
struct PROTOBUF_EXPORT ClassData {
const MessageLite* prototype;
const internal::TcParseTableBase* tc_table;
void (*on_demand_register_arena_dtor)(MessageLite& msg, Arena& arena);
bool (*is_initialized)(const MessageLite&);
void (*merge_to_from)(MessageLite& to, const MessageLite& from_msg);
internal::MessageCreator message_creator;
#if defined(PROTOBUF_CUSTOM_VTABLE)
void (*destroy_message)(MessageLite& msg);
void (MessageLite::*clear)();
size_t (*byte_size_long)(const MessageLite&);
uint8_t* (*serialize)(const MessageLite& msg, uint8_t* ptr,
io::EpsCopyOutputStream* stream);
#endif // PROTOBUF_CUSTOM_VTABLE
// Offset of the CachedSize member.
uint32_t cached_size_offset;
// LITE objects (ie !descriptor_methods) collocate their name as a
// char[] just beyond the ClassData.
bool is_lite;
bool is_dynamic = false;
// In normal mode we have the small constructor to avoid the cost in
// codegen.
#if !defined(PROTOBUF_CUSTOM_VTABLE)
constexpr ClassData(
const MessageLite* prototype, const internal::TcParseTableBase* tc_table,
void (*on_demand_register_arena_dtor)(MessageLite&, Arena&),
bool (*is_initialized)(const MessageLite&),
void (*merge_to_from)(MessageLite& to, const MessageLite& from_msg),
internal::MessageCreator message_creator, uint32_t cached_size_offset,
bool is_lite
)
: prototype(prototype),
tc_table(tc_table),
on_demand_register_arena_dtor(on_demand_register_arena_dtor),
is_initialized(is_initialized),
merge_to_from(merge_to_from),
message_creator(message_creator),
cached_size_offset(cached_size_offset),
is_lite(is_lite)
{
}
#endif // !PROTOBUF_CUSTOM_VTABLE
// But we always provide the full constructor even in normal mode to make
// helper code simpler.
constexpr ClassData(
const MessageLite* prototype, const internal::TcParseTableBase* tc_table,
void (*on_demand_register_arena_dtor)(MessageLite&, Arena&),
bool (*is_initialized)(const MessageLite&),
void (*merge_to_from)(MessageLite& to, const MessageLite& from_msg),
internal::MessageCreator message_creator,
void (*destroy_message)(MessageLite& msg), //
void (MessageLite::*clear)(),
size_t (*byte_size_long)(const MessageLite&),
uint8_t* (*serialize)(const MessageLite& msg, uint8_t* ptr,
io::EpsCopyOutputStream* stream),
uint32_t cached_size_offset, bool is_lite
)
: prototype(prototype),
tc_table(tc_table),
on_demand_register_arena_dtor(on_demand_register_arena_dtor),
is_initialized(is_initialized),
merge_to_from(merge_to_from),
message_creator(message_creator),
#if defined(PROTOBUF_CUSTOM_VTABLE)
destroy_message(destroy_message),
clear(clear),
byte_size_long(byte_size_long),
serialize(serialize),
#endif // PROTOBUF_CUSTOM_VTABLE
cached_size_offset(cached_size_offset),
is_lite(is_lite)
{
}
const ClassDataFull& full() const;
MessageLite* New(Arena* arena) const {
return message_creator.New(prototype, prototype, arena);
}
MessageLite* PlacementNew(void* mem, Arena* arena) const {
return message_creator.PlacementNew(prototype, prototype, mem, arena);
}
uint32_t allocation_size() const { return message_creator.allocation_size(); }
uint8_t alignment() const { return message_creator.alignment(); }
};
template <size_t N>
struct ClassDataLite {
ClassData header;
const char type_name[N];
constexpr const ClassData* base() const { return &header; }
};
// We use a secondary vtable for descriptor based methods. This way ClassData
// does not grow with the number of descriptor methods. This avoids extra
// costs in MessageLite.
struct PROTOBUF_EXPORT DescriptorMethods {
absl::string_view (*get_type_name)(const ClassData* data);
std::string (*initialization_error_string)(const MessageLite&);
const internal::TcParseTableBase* (*get_tc_table)(const MessageLite&);
size_t (*space_used_long)(const MessageLite&);
std::string (*debug_string)(const MessageLite&);
};
struct PROTOBUF_EXPORT ClassDataFull : ClassData {
constexpr ClassDataFull(ClassData base,
const DescriptorMethods* descriptor_methods,
const internal::DescriptorTable* descriptor_table,
void (*get_metadata_tracker)())
: ClassData(base),
descriptor_methods(descriptor_methods),
descriptor_table(descriptor_table),
reflection(),
descriptor(),
get_metadata_tracker(get_metadata_tracker) {}
constexpr const ClassData* base() const { return this; }
const DescriptorMethods* descriptor_methods;
// Codegen types will provide a DescriptorTable to do lazy
// registration/initialization of the reflection objects.
// Other types, like DynamicMessage, keep the table as null but eagerly
// populate `reflection`/`descriptor` fields.
const internal::DescriptorTable* descriptor_table;
// Accesses are protected by the once_flag in `descriptor_table`. When the
// table is null these are populated from the beginning and need to
// protection.
mutable const Reflection* reflection;
mutable const Descriptor* descriptor;
// When an access tracker is installed, this function notifies the tracker
// that GetMetadata was called.
void (*get_metadata_tracker)();
};
inline const ClassDataFull& ClassData::full() const {
ABSL_DCHECK(!is_lite);
return *static_cast<const ClassDataFull*>(this);
}
} // namespace internal
// Interface to light weight protocol messages.
//
// This interface is implemented by all protocol message objects. Non-lite
// messages additionally implement the Message interface, which is a
// subclass of MessageLite. Use MessageLite instead when you only need
// the subset of features which it supports -- namely, nothing that uses
// descriptors or reflection. You can instruct the protocol compiler
// to generate classes which implement only MessageLite, not the full
// Message interface, by adding the following line to the .proto file:
//
// option optimize_for = LITE_RUNTIME;
//
// This is particularly useful on resource-constrained systems where
// the full protocol buffers runtime library is too big.
//
// Note that on non-constrained systems (e.g. servers) when you need
// to link in lots of protocol definitions, a better way to reduce
// total code footprint is to use optimize_for = CODE_SIZE. This
// will make the generated code smaller while still supporting all the
// same features (at the expense of speed). optimize_for = LITE_RUNTIME
// is best when you only have a small number of message types linked
// into your binary, in which case the size of the protocol buffers
// runtime itself is the biggest problem.
//
// Users must not derive from this class. Only the protocol compiler and
// the internal library are allowed to create subclasses.
class PROTOBUF_EXPORT MessageLite {
public:
MessageLite(const MessageLite&) = delete;
MessageLite& operator=(const MessageLite&) = delete;
PROTOBUF_VIRTUAL ~MessageLite() = default;
// Basic Operations ------------------------------------------------
// Get the name of this message type, e.g. "foo.bar.BazProto".
internal::GetTypeNameReturnType GetTypeName() const;
// Construct a new instance of the same type. Ownership is passed to the
// caller.
MessageLite* New() const { return New(nullptr); }
// Construct a new instance on the arena. Ownership is passed to the caller
// if arena is a nullptr.
MessageLite* New(Arena* arena) const;
// Returns the arena, if any, that directly owns this message and its internal
// memory (Arena::Own is different in that the arena doesn't directly own the
// internal memory). This method is used in proto's implementation for
// swapping, moving and setting allocated, for deciding whether the ownership
// of this message or its internal memory could be changed.
Arena* GetArena() const { return _internal_metadata_.arena(); }
// Clear all fields of the message and set them to their default values.
// Clear() assumes that any memory allocated to hold parts of the message
// will likely be needed again, so the memory used may not be freed.
// To ensure that all memory used by a Message is freed, you must delete it.
#if defined(PROTOBUF_CUSTOM_VTABLE)
void Clear() { (this->*_class_data_->clear)(); }
#else
virtual void Clear() = 0;
#endif // PROTOBUF_CUSTOM_VTABLE
// Quickly check if all required fields have values set.
bool IsInitialized() const;
// This is not implemented for Lite messages -- it just returns "(cannot
// determine missing fields for lite message)". However, it is implemented
// for full messages. See message.h.
std::string InitializationErrorString() const;
// If |other| is the exact same class as this, calls MergeFrom(). Otherwise,
// results are undefined (probably crash).
void CheckTypeAndMergeFrom(const MessageLite& other);
// These methods return a human-readable summary of the message. Note that
// since the MessageLite interface does not support reflection, there is very
// little information that these methods can provide. They are shadowed by
// methods of the same name on the Message interface which provide much more
// information. The methods here are intended primarily to facilitate code
// reuse for logic that needs to interoperate with both full and lite protos.
//
// The format of the returned string is subject to change, so please do not
// assume it will remain stable over time.
std::string DebugString() const;
std::string ShortDebugString() const { return DebugString(); }
// MessageLite::DebugString is already Utf8 Safe. This is to add compatibility
// with Message.
std::string Utf8DebugString() const { return DebugString(); }
// Implementation of the `AbslStringify` interface. This adds `DebugString()`
// to the sink. Do not rely on exact format.
template <typename Sink>
friend void AbslStringify(Sink& sink, const google::protobuf::MessageLite& msg) {
sink.Append(msg.DebugString());
}
// Parsing ---------------------------------------------------------
// Methods for parsing in protocol buffer format. Most of these are
// just simple wrappers around MergeFromCodedStream(). Clear() will be
// called before merging the input.
// Fill the message with a protocol buffer parsed from the given input
// stream. Returns false on a read error or if the input is in the wrong
// format. A successful return does not indicate the entire input is
// consumed, ensure you call ConsumedEntireMessage() to check that if
// applicable.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromCodedStream(
io::CodedInputStream* input);
// Like ParseFromCodedStream(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromCodedStream(
io::CodedInputStream* input);
// Read a protocol buffer from the given zero-copy input stream. If
// successful, the entire input will be consumed.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromZeroCopyStream(
io::ZeroCopyInputStream* input);
// Like ParseFromZeroCopyStream(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromZeroCopyStream(
io::ZeroCopyInputStream* input);
// Parse a protocol buffer from a file descriptor. If successful, the entire
// input will be consumed.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromFileDescriptor(
int file_descriptor);
// Like ParseFromFileDescriptor(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromFileDescriptor(
int file_descriptor);
// Parse a protocol buffer from a C++ istream. If successful, the entire
// input will be consumed.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromIstream(std::istream* input);
// Like ParseFromIstream(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromIstream(
std::istream* input);
// Read a protocol buffer from the given zero-copy input stream, expecting
// the message to be exactly "size" bytes long. If successful, exactly
// this many bytes will have been consumed from the input.
bool MergePartialFromBoundedZeroCopyStream(io::ZeroCopyInputStream* input,
int size);
// Like ParseFromBoundedZeroCopyStream(), but accepts messages that are
// missing required fields.
bool MergeFromBoundedZeroCopyStream(io::ZeroCopyInputStream* input, int size);
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromBoundedZeroCopyStream(
io::ZeroCopyInputStream* input, int size);
// Like ParseFromBoundedZeroCopyStream(), but accepts messages that are
// missing required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromBoundedZeroCopyStream(
io::ZeroCopyInputStream* input, int size);
// Parses a protocol buffer contained in a string. Returns true on success.
// This function takes a string in the (non-human-readable) binary wire
// format, matching the encoding output by MessageLite::SerializeToString().
// If you'd like to convert a human-readable string into a protocol buffer
// object, see google::protobuf::TextFormat::ParseFromString().
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromString(absl::string_view data);
// Like ParseFromString(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromString(
absl::string_view data);
// Parse a protocol buffer contained in an array of bytes.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromArray(const void* data, int size);
// Like ParseFromArray(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromArray(const void* data,
int size);
// Reads a protocol buffer from the stream and merges it into this
// Message. Singular fields read from the what is
// already in the Message and repeated fields are appended to those
// already present.
//
// It is the responsibility of the caller to call input->LastTagWas()
// (for groups) or input->ConsumedEntireMessage() (for non-groups) after
// this returns to verify that the message's end was delimited correctly.
//
// ParseFromCodedStream() is implemented as Clear() followed by
// MergeFromCodedStream().
bool MergeFromCodedStream(io::CodedInputStream* input);
// Like MergeFromCodedStream(), but succeeds even if required fields are
// missing in the input.
//
// MergeFromCodedStream() is just implemented as MergePartialFromCodedStream()
// followed by IsInitialized().
bool MergePartialFromCodedStream(io::CodedInputStream* input);
// Merge a protocol buffer contained in a string.
bool MergeFromString(absl::string_view data);
// Serialization ---------------------------------------------------
// Methods for serializing in protocol buffer format. Most of these
// are just simple wrappers around ByteSize() and SerializeWithCachedSizes().
// Write a protocol buffer of this message to the given output. Returns
// false on a write error. If the message is missing required fields,
// this may ABSL_CHECK-fail.
bool SerializeToCodedStream(io::CodedOutputStream* output) const;
// Like SerializeToCodedStream(), but allows missing required fields.
bool SerializePartialToCodedStream(io::CodedOutputStream* output) const;
// Write the message to the given zero-copy output stream. All required
// fields must be set.
bool SerializeToZeroCopyStream(io::ZeroCopyOutputStream* output) const;
// Like SerializeToZeroCopyStream(), but allows missing required fields.
bool SerializePartialToZeroCopyStream(io::ZeroCopyOutputStream* output) const;
// Serialize the message and store it in the given string. All required
// fields must be set.
bool SerializeToString(std::string* output) const;
// Like SerializeToString(), but allows missing required fields.
bool SerializePartialToString(std::string* output) const;
// Serialize the message and store it in the given byte array. All required
// fields must be set.
bool SerializeToArray(void* data, int size) const;
// Like SerializeToArray(), but allows missing required fields.
bool SerializePartialToArray(void* data, int size) const;
// Make a string encoding the message. Is equivalent to calling
// SerializeToString() on a string and using that. Returns the empty
// string if SerializeToString() would have returned an error.
// Note: If you intend to generate many such strings, you may
// reduce heap fragmentation by instead re-using the same string
// object with calls to SerializeToString().
std::string SerializeAsString() const;
// Like SerializeAsString(), but allows missing required fields.
std::string SerializePartialAsString() const;
// Serialize the message and write it to the given file descriptor. All
// required fields must be set.
bool SerializeToFileDescriptor(int file_descriptor) const;
// Like SerializeToFileDescriptor(), but allows missing required fields.
bool SerializePartialToFileDescriptor(int file_descriptor) const;
// Serialize the message and write it to the given C++ ostream. All
// required fields must be set.
bool SerializeToOstream(std::ostream* output) const;
// Like SerializeToOstream(), but allows missing required fields.
bool SerializePartialToOstream(std::ostream* output) const;
// Like SerializeToString(), but appends to the data to the string's
// existing contents. All required fields must be set.
bool AppendToString(std::string* output) const;
// Like AppendToString(), but allows missing required fields.
bool AppendPartialToString(std::string* output) const;
// Reads a protocol buffer from a Cord and merges it into this message.
bool MergeFromCord(const absl::Cord& cord);
// Like MergeFromCord(), but accepts messages that are missing
// required fields.
bool MergePartialFromCord(const absl::Cord& cord);
// Parse a protocol buffer contained in a Cord.
ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromCord(const absl::Cord& cord);
// Like ParseFromCord(), but accepts messages that are missing
// required fields.
ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromCord(
const absl::Cord& cord);
// Serialize the message and store it in the given Cord. All required
// fields must be set.
bool SerializeToCord(absl::Cord* output) const;
// Like SerializeToCord(), but allows missing required fields.
bool SerializePartialToCord(absl::Cord* output) const;
// Make a Cord encoding the message. Is equivalent to calling
// SerializeToCord() on a Cord and using that. Returns an empty
// Cord if SerializeToCord() would have returned an error.
absl::Cord SerializeAsCord() const;
// Like SerializeAsCord(), but allows missing required fields.
absl::Cord SerializePartialAsCord() const;
// Like SerializeToCord(), but appends to the data to the Cord's existing
// contents. All required fields must be set.
bool AppendToCord(absl::Cord* output) const;
// Like AppendToCord(), but allows missing required fields.
bool AppendPartialToCord(absl::Cord* output) const;
// Computes the serialized size of the message. This recursively calls
// ByteSizeLong() on all embedded messages.
//
// ByteSizeLong() is generally linear in the number of fields defined for the
// proto.
#if defined(PROTOBUF_CUSTOM_VTABLE)
size_t ByteSizeLong() const { return _class_data_->byte_size_long(*this); }
#else
virtual size_t ByteSizeLong() const = 0;
#endif // PROTOBUF_CUSTOM_VTABLE
// Legacy ByteSize() API.
[[deprecated("Please use ByteSizeLong() instead")]] int ByteSize() const {
return internal::ToIntSize(ByteSizeLong());
}
// Serializes the message without recomputing the size. The message must not
// have changed since the last call to ByteSize(), and the value returned by
// ByteSize must be non-negative. Otherwise the results are undefined.
void SerializeWithCachedSizes(io::CodedOutputStream* output) const {
output->SetCur(_InternalSerialize(output->Cur(), output->EpsCopy()));
}
// Functions below here are not part of the public interface. It isn't
// enforced, but they should be treated as private, and will be private
// at some future time. Unfortunately the implementation of the "friend"
// keyword in GCC is broken at the moment, but we expect it will be fixed.
// Like SerializeWithCachedSizes, but writes directly to *target, returning
// a pointer to the byte immediately after the last byte written. "target"
// must point at a byte array of at least ByteSize() bytes. Whether to use
// deterministic serialization, e.g., maps in sorted order, is determined by
// CodedOutputStream::IsDefaultSerializationDeterministic().
uint8_t* SerializeWithCachedSizesToArray(uint8_t* target) const;
// Returns the result of the last call to ByteSize(). An embedded message's
// size is needed both to serialize it (only true for length-prefixed
// submessages) and to compute the outer message's size. Caching
// the size avoids computing it multiple times.
// Note that the submessage size is unnecessary when using
// group encoding / delimited since we have SGROUP/EGROUP bounds.
//
// ByteSize() does not automatically use the cached size when available
// because this would require invalidating it every time the message was
// modified, which would be too hard and expensive. (E.g. if a deeply-nested
// sub-message is changed, all of its parents' cached sizes would need to be
// invalidated, which is too much work for an otherwise inlined setter
// method.)
#if defined(PROTOBUF_CUSTOM_VTABLE)
int GetCachedSize() const { return AccessCachedSize().Get(); }
#else
int GetCachedSize() const;
#endif
const char* _InternalParse(const char* ptr, internal::ParseContext* ctx);
void OnDemandRegisterArenaDtor(Arena* arena);
protected:
// Message implementations require access to internally visible API.
static constexpr internal::InternalVisibility internal_visibility() {
return internal::InternalVisibility{};
}
template <typename T>
PROTOBUF_ALWAYS_INLINE static T* DefaultConstruct(Arena* arena) {
return static_cast<T*>(Arena::DefaultConstruct<T>(arena));
}
template <typename T>
static void* NewImpl(const void*, void* mem, Arena* arena) {
return ::new (mem) T(arena);
}
template <typename T>
static constexpr internal::MessageCreator GetNewImpl() {
#if defined(__cpp_if_constexpr)
if constexpr (internal::EnableCustomNewFor<T>()) {
#else
// Equally valid code, but might be more work for the compiler
if (internal::EnableCustomNewFor<T>()) {
#endif
return T::InternalNewImpl_();
} else {
return internal::MessageCreator(&T::PlacementNew_, sizeof(T), alignof(T));
}
}
#if defined(PROTOBUF_CUSTOM_VTABLE)
template <typename T>
static constexpr auto GetClearImpl() {
return static_cast<void (MessageLite::*)()>(&T::Clear);
}
#else // PROTOBUF_CUSTOM_VTABLE
// When custom vtables are off we avoid instantiating the functions because we
// will not use them anyway. Less work for the compiler.
template <typename T>
using GetClearImpl = std::nullptr_t;
#endif // PROTOBUF_CUSTOM_VTABLE
template <typename T>
PROTOBUF_ALWAYS_INLINE static T* CopyConstruct(Arena* arena, const T& from) {
return static_cast<T*>(Arena::CopyConstruct<T>(arena, &from));
}
const internal::TcParseTableBase* GetTcParseTable() const {
auto* data = GetClassData();
ABSL_DCHECK(data != nullptr);
auto* tc_table = data->tc_table;
if (ABSL_PREDICT_FALSE(tc_table == nullptr)) {
ABSL_DCHECK(!data->is_lite);
return data->full().descriptor_methods->get_tc_table(*this);
}
return tc_table;
}
#if defined(PROTOBUF_CUSTOM_VTABLE)
explicit constexpr MessageLite(const internal::ClassData* data)
: _class_data_(data) {}
explicit MessageLite(Arena* arena, const internal::ClassData* data)
: _internal_metadata_(arena), _class_data_(data) {}
#else // PROTOBUF_CUSTOM_VTABLE
constexpr MessageLite() {}
explicit MessageLite(Arena* arena) : _internal_metadata_(arena) {}
explicit constexpr MessageLite(const internal::ClassData*) {}
explicit MessageLite(Arena* arena, const internal::ClassData*)
: _internal_metadata_(arena) {}
#endif // PROTOBUF_CUSTOM_VTABLE
// GetClassData() returns a pointer to a ClassData struct which
// exists in global memory and is unique to each subclass. This uniqueness
// property is used in order to quickly determine whether two messages are
// of the same type.
//
// This is a work in progress. There are still some types (eg MapEntry) that
// return a default table instead of a unique one.
#if defined(PROTOBUF_CUSTOM_VTABLE)
const internal::ClassData* GetClassData() const {
::absl::PrefetchToLocalCache(_class_data_);
return _class_data_;
}
#else // PROTOBUF_CUSTOM_VTABLE
virtual const internal::ClassData* GetClassData() const = 0;
#endif // PROTOBUF_CUSTOM_VTABLE
template <typename T>
static auto GetClassDataGenerated() {
static_assert(std::is_base_of<MessageLite, T>::value, "");
// We could speed this up if needed by avoiding the function call.
// In LTO this is likely inlined, so it might not matter.
static_assert(
std::is_same<const T&, decltype(T::default_instance())>::value, "");
return T::default_instance().T::GetClassData();
}
internal::InternalMetadata _internal_metadata_;
#if defined(PROTOBUF_CUSTOM_VTABLE)
const internal::ClassData* _class_data_;
#endif // PROTOBUF_CUSTOM_VTABLE
// Return the cached size object as described by
// ClassData::cached_size_offset.
const internal::CachedSize& AccessCachedSize() const {
return *reinterpret_cast<const internal::CachedSize*>(
reinterpret_cast<const char*>(this) +
GetClassData()->cached_size_offset);
}
public:
enum ParseFlags {
// Merge vs. Parse:
// Merge: overwrites scalar fields but appends to repeated fields in the
// destination; other fields in the destination remain untouched.
// Parse: clears all fields in the destination before calling Merge.
kMerge = 0,
kParse = 1,
// Default behaviour vs. Partial:
// Default: a missing required field is deemed as parsing failure.
// Partial: parse or merge will not give an error if input is missing
// required fields.
kMergePartial = 2,
kParsePartial = 3,
// Default behaviour vs. Aliasing:
// Default: when merging, pointer is followed and expanded (deep-copy).
// Aliasing: when merging, the destination message is allowed to retain
// pointers to the original structure (shallow-copy). This mostly
// is intended for use with STRING_PIECE.
// NOTE: STRING_PIECE is not recommended for new usage. Prefer Cords.
kMergeWithAliasing = 4,
kParseWithAliasing = 5,
kMergePartialWithAliasing = 6,
kParsePartialWithAliasing = 7
};
template <ParseFlags flags, typename T>
bool ParseFrom(const T& input);
// Fast path when conditions match (ie. non-deterministic)
// uint8_t* _InternalSerialize(uint8_t* ptr) const;
#if defined(PROTOBUF_CUSTOM_VTABLE)
uint8_t* _InternalSerialize(uint8_t* ptr,
io::EpsCopyOutputStream* stream) const {
return _class_data_->serialize(*this, ptr, stream);
}
#else // PROTOBUF_CUSTOM_VTABLE
virtual uint8_t* _InternalSerialize(
uint8_t* ptr, io::EpsCopyOutputStream* stream) const = 0;
#endif // PROTOBUF_CUSTOM_VTABLE
// Identical to IsInitialized() except that it logs an error message.
bool IsInitializedWithErrors() const {
if (IsInitialized()) return true;
LogInitializationErrorMessage();
return false;
}
#if defined(PROTOBUF_CUSTOM_VTABLE)
void operator delete(MessageLite* msg, std::destroying_delete_t) {
msg->DeleteInstance();
}
#endif
private:
friend class FastReflectionMessageMutator;
friend class AssignDescriptorsHelper;
friend class FastReflectionStringSetter;
friend class Message;
friend class Reflection;
friend class TypeId;
friend class compiler::cpp::MessageTableTester;
friend class internal::DescriptorPoolExtensionFinder;
friend class internal::ExtensionSet;
friend class internal::LazyField;
friend class internal::SwapFieldHelper;
friend class internal::TcParser;
friend struct internal::TcParseTableBase;
friend class internal::UntypedMapBase;
friend class internal::WeakFieldMap;
friend class internal::WireFormatLite;
friend class internal::RustMapHelper;
friend internal::MessageCreator;
template <typename Type>
friend class Arena::InternalHelper;
friend auto internal::GetClassData(const MessageLite& msg);
void LogInitializationErrorMessage() const;
bool MergeFromImpl(io::CodedInputStream* input, ParseFlags parse_flags);
// Runs the destructor for this instance.
void DestroyInstance();
// Runs the destructor for this instance and deletes the memory via
// `operator delete`
void DeleteInstance();
// For tests that need to inspect private _oneof_case_. It is the callers
// responsibility to ensure T has the right member.
template <typename T>
static uint32_t GetOneofCaseOffsetForTesting() {
return offsetof(T, _impl_._oneof_case_);
}
};
// A `std::type_info` equivalent for protobuf message types.
// This class is preferred over using `typeid` for a few reasons:
// - It works with RTTI disabled.
// - It works for `DynamicMessage` types.
// - It works in custom vtable mode.
//
// Usage:
// - Instead of `typeid(Type)` use `TypeId::Get<Type>()`
// - Instead of `typeid(expr)` use `TypeId::Get(expr)`
//
// Supports all relationals including <=>, and supports hashing via
// `absl::Hash`.
class TypeId {
public:
static TypeId Get(const MessageLite& msg) {
return TypeId(msg.GetClassData());
}
template <typename T>
static TypeId Get() {
return TypeId(MessageLite::GetClassDataGenerated<T>());
}
// Name of the message type.
// Equivalent to `.GetTypeName()` on the message.
absl::string_view name() const;
friend constexpr bool operator==(TypeId a, TypeId b) {
return a.data_ == b.data_;
}
friend constexpr bool operator!=(TypeId a, TypeId b) { return !(a == b); }
friend constexpr bool operator<(TypeId a, TypeId b) {
return a.data_ < b.data_;
}
friend constexpr bool operator>(TypeId a, TypeId b) {
return a.data_ > b.data_;
}
friend constexpr bool operator<=(TypeId a, TypeId b) {
return a.data_ <= b.data_;
}
friend constexpr bool operator>=(TypeId a, TypeId b) {
return a.data_ >= b.data_;
}
#if defined(__cpp_impl_three_way_comparison) && \
__cpp_impl_three_way_comparison >= 201907L
friend constexpr auto operator<=>(TypeId a, TypeId b) {
return a.data_ <=> b.data_;
}
#endif
template <typename H>
friend H AbslHashValue(H state, TypeId id) {
return H::combine(std::move(state), id.data_);
}
private:
constexpr explicit TypeId(const internal::ClassData* data) : data_(data) {}
const internal::ClassData* data_;
};
namespace internal {
inline auto GetClassData(const MessageLite& msg) { return msg.GetClassData(); }
template <bool alias>
bool MergeFromImpl(absl::string_view input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<false>(
absl::string_view input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<true>(
absl::string_view input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
template <bool alias>
bool MergeFromImpl(io::ZeroCopyInputStream* input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<false>(
io::ZeroCopyInputStream* input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<true>(
io::ZeroCopyInputStream* input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
struct BoundedZCIS {
io::ZeroCopyInputStream* zcis;
int limit;
};
template <bool alias>
bool MergeFromImpl(BoundedZCIS input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<false>(
BoundedZCIS input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl<true>(
BoundedZCIS input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags);
template <typename T>
struct SourceWrapper;
template <bool alias, typename T>
bool MergeFromImpl(const SourceWrapper<T>& input, MessageLite* msg,
const internal::TcParseTableBase* tc_table,
MessageLite::ParseFlags parse_flags) {
return input.template MergeInto<alias>(msg, tc_table, parse_flags);
}
} // namespace internal
template <MessageLite::ParseFlags flags, typename T>
bool MessageLite::ParseFrom(const T& input) {
if (flags & kParse) Clear();
constexpr bool alias = (flags & kMergeWithAliasing) != 0;
const internal::TcParseTableBase* tc_table;
PROTOBUF_ALWAYS_INLINE_CALL tc_table = GetTcParseTable();
return internal::MergeFromImpl<alias>(input, this, tc_table, flags);
}
// ===================================================================
// Shutdown support.
// Shut down the entire protocol buffers library, deleting all static-duration
// objects allocated by the library or by generated .pb.cc files.
//
// There are two reasons you might want to call this:
// * You use a draconian definition of "memory leak" in which you expect
// every single malloc() to have a corresponding free(), even for objects
// which live until program exit.
// * You are writing a dynamically-loaded library which needs to clean up
// after itself when the library is unloaded.
//
// It is safe to call this multiple times. However, it is not safe to use
// any other part of the protocol buffers library after
// ShutdownProtobufLibrary() has been called. Furthermore this call is not
// thread safe, user needs to synchronize multiple calls.
PROTOBUF_EXPORT void ShutdownProtobufLibrary();
namespace internal {
// Register a function to be called when ShutdownProtocolBuffers() is called.
PROTOBUF_EXPORT void OnShutdown(void (*func)());
// Run an arbitrary function on an arg
PROTOBUF_EXPORT void OnShutdownRun(void (*f)(const void*), const void* arg);
template <typename T>
T* OnShutdownDelete(T* p) {
OnShutdownRun([](const void* pp) { delete static_cast<const T*>(pp); }, p);
return p;
}
inline void AssertDownCast(const MessageLite& from, const MessageLite& to) {
ABSL_DCHECK(TypeId::Get(from) == TypeId::Get(to))
<< "Cannot downcast " << from.GetTypeName() << " to " << to.GetTypeName();
}
template <bool test_call, typename MessageLite>
PROTOBUF_ALWAYS_INLINE inline MessageLite* MessageCreator::PlacementNew(
const MessageLite* prototype_for_func,
const MessageLite* prototype_for_copy, void* mem, Arena* arena) const {
ABSL_DCHECK_EQ(reinterpret_cast<uintptr_t>(mem) % alignment_, 0u);
const Tag as_tag = tag();
// When the feature is not enabled we skip the `as_tag` check since it is
// unnecessary. Except for testing, where we want to test the copy logic even
// when we can't use it for real messages.
constexpr bool kMustBeFunc = !test_call && !internal::EnableCustomNew();
static_assert(kFunc < 0 && !(kZeroInit < 0) && !(kMemcpy < 0),
"Only kFunc must be the only negative value");
if (ABSL_PREDICT_FALSE(kMustBeFunc || as_tag < 0)) {
PROTOBUF_DEBUG_COUNTER("MessageCreator.Func").Inc();
return static_cast<MessageLite*>(func_(prototype_for_func, mem, arena));
}
char* dst = static_cast<char*>(mem);
const size_t size = allocation_size_;
const char* src = reinterpret_cast<const char*>(prototype_for_copy);
// These are a bit more efficient than calling normal memset/memcpy because:
// - We know the minimum size is 16. We have a fallback for when it is not.
// - We can "underflow" the buffer because those are the MessageLite bytes
// we will set later.
#ifndef PROTO2_OPENSOURCE
// This manual handling shows a 1.85% improvement in the parsing
// microbenchmark.
// TODO: Verify this is still the case.
#endif // !PROTO2_OPENSOUCE
if (as_tag == kZeroInit) {
// Make sure the input is really all zeros.
ABSL_DCHECK(std::all_of(src + sizeof(MessageLite), src + size,
[](auto c) { return c == 0; }));
if (sizeof(MessageLite) != 16) {
memset(dst, 0, size);
} else if (size <= 32) {
memset(dst + size - 16, 0, 16);
} else if (size <= 64) {
memset(dst + 16, 0, 16);
memset(dst + size - 32, 0, 32);
} else {
for (size_t offset = 16; offset + 64 < size; offset += 64) {
absl::PrefetchToLocalCacheForWrite(dst + offset + 64);
memset(dst + offset, 0, 64);
}
memset(dst + size - 64, 0, 64);
}
} else {
ABSL_DCHECK_EQ(+as_tag, +kMemcpy);
if (sizeof(MessageLite) != 16) {
memcpy(dst, src, size);
} else if (size <= 32) {
memcpy(dst + size - 16, src + size - 16, 16);
} else if (size <= 64) {
memcpy(dst + 16, src + 16, 16);
memcpy(dst + size - 32, src + size - 32, 32);
} else {
for (size_t offset = 16; offset + 64 < size; offset += 64) {
absl::PrefetchToLocalCache(src + offset + 64);
absl::PrefetchToLocalCacheForWrite(dst + offset + 64);
memcpy(dst + offset, src + offset, 64);
}
memcpy(dst + size - 64, src + size - 64, 64);
}
}
if (arena_bits() != 0) {
if (as_tag == kZeroInit) {
PROTOBUF_DEBUG_COUNTER("MessageCreator.ZeroArena").Inc();
} else {
PROTOBUF_DEBUG_COUNTER("MessageCreator.McpyArena").Inc();
}
} else {
if (as_tag == kZeroInit) {
PROTOBUF_DEBUG_COUNTER("MessageCreator.Zero").Inc();
} else {
PROTOBUF_DEBUG_COUNTER("MessageCreator.Mcpy").Inc();
}
}
if (internal::PerformDebugChecks() || arena != nullptr) {
if (uintptr_t offsets = arena_bits()) {
do {
const size_t offset = absl::countr_zero(offsets) * sizeof(Arena*);
ABSL_DCHECK_LE(offset + sizeof(Arena*), size);
// Verify we are overwriting a null pointer. If we are not, there is a
// bug somewhere.
ABSL_DCHECK_EQ(*reinterpret_cast<Arena**>(dst + offset), nullptr);
memcpy(dst + offset, &arena, sizeof(arena));
offsets &= offsets - 1;
} while (offsets != 0);
}
}
// The second memcpy overwrites part of the first, but the compiler should
// avoid the double-write. It's easier than trying to avoid the overlap.
memcpy(dst, static_cast<const void*>(prototype_for_copy),
sizeof(MessageLite));
memcpy(dst + PROTOBUF_FIELD_OFFSET(MessageLite, _internal_metadata_), &arena,
sizeof(arena));
return Launder(reinterpret_cast<MessageLite*>(mem));
}
template <bool test_call, typename MessageLite>
PROTOBUF_ALWAYS_INLINE inline MessageLite* MessageCreator::New(
const MessageLite* prototype_for_func,
const MessageLite* prototype_for_copy, Arena* arena) const {
return PlacementNew<test_call>(prototype_for_func, prototype_for_copy,
arena != nullptr
? arena->AllocateAligned(allocation_size_)
: ::operator new(allocation_size_),
arena);
}
} // namespace internal
std::string ShortFormat(const MessageLite& message_lite);
std::string Utf8Format(const MessageLite& message_lite);
// Cast functions for message pointer/references.
// This is the supported API to cast from a Message/MessageLite to derived
// types. These work even when RTTI is disabled on message types.
//
// The template parameter is simplified and the return type is inferred from the
// input. Eg just `DynamicCastMessage<Foo>(x)` instead of
// `DynamicCastMessage<const Foo*>(x)`.
//
// `DynamicCastMessage` is similar to `dynamic_cast`, returns `nullptr` when the
// input is not an instance of `T`. The overloads that take a reference will
// terminate on mismatch.
//
// `DownCastMessage` is a lightweight function for downcasting base
// `MessageLite` pointer to derived type, where it only does type checking if
// !NDEBUG. It should only be used when the caller is certain that the input
// message is of instance `T`.
template <typename T>
const T* DynamicCastMessage(const MessageLite* from) {
static_assert(std::is_base_of<MessageLite, T>::value, "");
// We might avoid the call to T::GetClassData() altogether if T were to
// expose the class data pointer.
if (from == nullptr || TypeId::Get<T>() != TypeId::Get(*from)) {
return nullptr;
}
return static_cast<const T*>(from);
}
template <typename T>
T* DynamicCastMessage(MessageLite* from) {
return const_cast<T*>(
DynamicCastMessage<T>(static_cast<const MessageLite*>(from)));
}
namespace internal {
[[noreturn]] PROTOBUF_EXPORT void FailDynamicCast(const MessageLite& from,
const MessageLite& to);
} // namespace internal
template <typename T>
const T& DynamicCastMessage(const MessageLite& from) {
const T* destination_message = DynamicCastMessage<T>(&from);
if (ABSL_PREDICT_FALSE(destination_message == nullptr)) {
// Move the logging into an out-of-line function to reduce bloat in the
// caller.
internal::FailDynamicCast(from, T::default_instance());
}
return *destination_message;
}
template <typename T>
T& DynamicCastMessage(MessageLite& from) {
return const_cast<T&>(
DynamicCastMessage<T>(static_cast<const MessageLite&>(from)));
}
template <typename T>
const T* DownCastMessage(const MessageLite* from) {
internal::StrongReferenceToType<T>();
ABSL_DCHECK(DynamicCastMessage<T>(from) == from)
<< "Cannot downcast " << from->GetTypeName() << " to "
<< T::default_instance().GetTypeName();
return static_cast<const T*>(from);
}
template <typename T>
T* DownCastMessage(MessageLite* from) {
return const_cast<T*>(
DownCastMessage<T>(static_cast<const MessageLite*>(from)));
}
template <typename T>
const T& DownCastMessage(const MessageLite& from) {
return *DownCastMessage<T>(&from);
}
template <typename T>
T& DownCastMessage(MessageLite& from) {
return *DownCastMessage<T>(&from);
}
template <>
inline const MessageLite* DynamicCastMessage(const MessageLite* from) {
return from;
}
template <>
inline const MessageLite* DownCastMessage(const MessageLite* from) {
return from;
}
// Deprecated names for the cast functions.
// Prefer the ones above.
template <typename T>
PROTOBUF_DEPRECATE_AND_INLINE()
const T* DynamicCastToGenerated(const MessageLite* from) {
return DynamicCastMessage<T>(from);
}
template <typename T>
PROTOBUF_DEPRECATE_AND_INLINE()
T* DynamicCastToGenerated(MessageLite* from) {
return DynamicCastMessage<T>(from);
}
template <typename T>
PROTOBUF_DEPRECATE_AND_INLINE()
const T& DynamicCastToGenerated(const MessageLite& from) {
return DynamicCastMessage<T>(from);
}
template <typename T>
PROTOBUF_DEPRECATE_AND_INLINE()
T& DynamicCastToGenerated(MessageLite& from) {
return DynamicCastMessage<T>(from);
}
template <typename T>
PROTOBUF_DEPRECATE_AND_INLINE()
const T* DownCastToGenerated(const MessageLite* from) {
return DownCastMessage<T>(from);
}
template <typename T>
PROTOBUF_DEPRECATE_AND_INLINE()
T* DownCastToGenerated(MessageLite* from) {
return DownCastMessage<T>(from);
}
template <typename T>
PROTOBUF_DEPRECATE_AND_INLINE()
const T& DownCastToGenerated(const MessageLite& from) {
return DownCastMessage<T>(from);
}
template <typename T>
PROTOBUF_DEPRECATE_AND_INLINE()
T& DownCastToGenerated(MessageLite& from) {
return DownCastMessage<T>(from);
}
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_MESSAGE_LITE_H__