// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd #ifndef GOOGLE_PROTOBUF_COMPILER_SCC_H__ #define GOOGLE_PROTOBUF_COMPILER_SCC_H__ #include #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/absl_check.h" #include "absl/memory/memory.h" #include "google/protobuf/descriptor.h" // Must be included last. #include "google/protobuf/port_def.inc" namespace google { namespace protobuf { namespace compiler { // Description of each strongly connected component. Note that the order // of both the descriptors in this SCC and the order of children is // deterministic. struct SCC { std::vector descriptors; std::vector children; const Descriptor* GetRepresentative() const { return descriptors[0]; } // All messages must necessarily be in the same file. const FileDescriptor* GetFile() const { return descriptors[0]->file(); } }; // This class is used for analyzing the SCC for each message, to ensure linear // instead of quadratic performance, if we do this per message we would get // O(V*(V+E)). template class PROTOC_EXPORT SCCAnalyzer { public: explicit SCCAnalyzer() : index_(0) {} SCCAnalyzer(const SCCAnalyzer&) = delete; SCCAnalyzer& operator=(const SCCAnalyzer&) = delete; const SCC* GetSCC(const Descriptor* descriptor) { auto it = cache_.find(descriptor); if (it == cache_.end()) { return DFS(descriptor).scc; } return it->second->scc; } private: struct NodeData { const SCC* scc; // if null it means its still on the stack int index; int lowlink; }; absl::flat_hash_map> cache_; std::vector stack_; int index_; std::vector> garbage_bin_; SCC* CreateSCC() { garbage_bin_.emplace_back(new SCC()); return garbage_bin_.back().get(); } // Tarjan's Strongly Connected Components algo NodeData DFS(const Descriptor* descriptor) { // Mark visited by inserting in map. auto ins = cache_.try_emplace(descriptor, absl::make_unique()); // Must not have visited already. ABSL_DCHECK(ins.second); NodeData& result = *ins.first->second; // Initialize data structures. result.index = result.lowlink = index_++; stack_.push_back(descriptor); // Recurse the fields / nodes in graph for (const auto* dep : DepsGenerator()(descriptor)) { ABSL_CHECK(dep); auto it = cache_.find(dep); if (it == cache_.end()) { // unexplored node NodeData child_data = DFS(dep); result.lowlink = std::min(result.lowlink, child_data.lowlink); } else { NodeData& child_data = *it->second; if (child_data.scc == nullptr) { // Still in the stack_ so we found a back edge result.lowlink = std::min(result.lowlink, child_data.index); } } } if (result.index == result.lowlink) { // This is the root of a strongly connected component SCC* scc = CreateSCC(); while (true) { const Descriptor* scc_desc = stack_.back(); scc->descriptors.push_back(scc_desc); // Remove from stack stack_.pop_back(); cache_[scc_desc]->scc = scc; if (scc_desc == descriptor) break; } // The order of descriptors is random and depends how this SCC was // discovered. In-order to ensure maximum stability we sort it by name. std::sort(scc->descriptors.begin(), scc->descriptors.end(), [](const Descriptor* a, const Descriptor* b) { return a->full_name() < b->full_name(); }); AddChildren(scc); } return result; } // Add the SCC's that are children of this SCC to its children. void AddChildren(SCC* scc) { absl::flat_hash_set seen; for (auto descriptor : scc->descriptors) { for (auto child_msg : DepsGenerator()(descriptor)) { ABSL_CHECK(child_msg); const SCC* child = GetSCC(child_msg); if (child == scc) continue; if (seen.insert(child).second) { scc->children.push_back(child); } } } } }; } // namespace compiler } // namespace protobuf } // namespace google #include "google/protobuf/port_undef.inc" #endif // GOOGLE_PROTOBUF_COMPILER_SCC_H__