// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd // Authors: wink@google.com (Wink Saville), // kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // Defines MessageLite, the abstract interface implemented by all (lite // and non-lite) protocol message objects. #ifndef GOOGLE_PROTOBUF_MESSAGE_LITE_H__ #define GOOGLE_PROTOBUF_MESSAGE_LITE_H__ #include #include #include #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/casts.h" #include "absl/log/absl_check.h" #include "absl/numeric/bits.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "google/protobuf/arena.h" #include "google/protobuf/explicitly_constructed.h" #include "google/protobuf/internal_visibility.h" #include "google/protobuf/io/coded_stream.h" #include "google/protobuf/metadata_lite.h" #include "google/protobuf/port.h" // clang-format off #include "google/protobuf/port_def.inc" // clang-format on #ifdef SWIG #error "You cannot SWIG proto headers" #endif namespace google { namespace protobuf { template class RepeatedPtrField; class FastReflectionMessageMutator; class FastReflectionStringSetter; class Reflection; class Descriptor; class AssignDescriptorsHelper; class MessageLite; namespace io { class CodedInputStream; class CodedOutputStream; class ZeroCopyInputStream; class ZeroCopyOutputStream; } // namespace io namespace compiler { namespace cpp { class MessageTableTester; } // namespace cpp } // namespace compiler namespace internal { class MessageCreator { public: using Func = void* (*)(const void*, void*, Arena*); // Use -1/0/1 to be able to use <0, ==0, >0 enum Tag : int8_t { kFunc = -1, kZeroInit = 0, kMemcpy = 1, }; constexpr MessageCreator() : allocation_size_(), tag_(), alignment_(), arena_bits_(uintptr_t{}) {} static constexpr MessageCreator ZeroInit(uint32_t allocation_size, uint8_t alignment, uintptr_t arena_bits = 0) { MessageCreator out; out.allocation_size_ = allocation_size; out.tag_ = kZeroInit; out.alignment_ = alignment; out.arena_bits_ = arena_bits; return out; } static constexpr MessageCreator CopyInit(uint32_t allocation_size, uint8_t alignment, uintptr_t arena_bits = 0) { MessageCreator out; out.allocation_size_ = allocation_size; out.tag_ = kMemcpy; out.alignment_ = alignment; out.arena_bits_ = arena_bits; return out; } constexpr MessageCreator(Func func, uint32_t allocation_size, uint8_t alignment) : allocation_size_(allocation_size), tag_(kFunc), alignment_(alignment), func_(func) {} // Template for testing. template MessageLite* New(const MessageLite* prototype_for_func, const MessageLite* prototype_for_copy, Arena* arena) const; template MessageLite* PlacementNew(const MessageLite* prototype_for_func, const MessageLite* prototype_for_copy, void* mem, Arena* arena) const; Tag tag() const { return tag_; } uint32_t allocation_size() const { return allocation_size_; } uint8_t alignment() const { return alignment_; } uintptr_t arena_bits() const { ABSL_DCHECK_NE(+tag(), +kFunc); return arena_bits_; } private: uint32_t allocation_size_; Tag tag_; uint8_t alignment_; union { Func func_; uintptr_t arena_bits_; }; }; // Allow easy change to regular int on platforms where the atomic might have a // perf impact. // // CachedSize is like std::atomic but with some important changes: // // 1) CachedSize uses Get / Set rather than load / store. // 2) CachedSize always uses relaxed ordering. // 3) CachedSize is assignable and copy-constructible. // 4) CachedSize has a constexpr default constructor, and a constexpr // constructor that takes an int argument. // 5) If the compiler supports the __atomic_load_n / __atomic_store_n builtins, // then CachedSize is trivially copyable. // // Developed at https://godbolt.org/z/vYcx7zYs1 ; supports gcc, clang, MSVC. class PROTOBUF_EXPORT CachedSize { private: using Scalar = int; public: constexpr CachedSize() noexcept : atom_(Scalar{}) {} // NOLINTNEXTLINE(google-explicit-constructor) constexpr CachedSize(Scalar desired) noexcept : atom_(desired) {} #if PROTOBUF_BUILTIN_ATOMIC constexpr CachedSize(const CachedSize& other) = default; Scalar Get() const noexcept { return __atomic_load_n(&atom_, __ATOMIC_RELAXED); } void Set(Scalar desired) const noexcept { // Avoid writing the value when it is zero. This prevents writing to global // default instances, which might be in readonly memory. if (ABSL_PREDICT_FALSE(desired == 0)) { if (Get() == 0) return; } __atomic_store_n(&atom_, desired, __ATOMIC_RELAXED); } void SetNonZero(Scalar desired) const noexcept { __atomic_store_n(&atom_, desired, __ATOMIC_RELAXED); } #else CachedSize(const CachedSize& other) noexcept : atom_(other.Get()) {} CachedSize& operator=(const CachedSize& other) noexcept { Set(other.Get()); return *this; } Scalar Get() const noexcept { // return atom_.load(std::memory_order_relaxed); } void Set(Scalar desired) const noexcept { // Avoid writing the value when it is zero. This prevents writing to global // default instances, which might be in readonly memory. if (ABSL_PREDICT_FALSE(desired == 0)) { if (Get() == 0) return; } atom_.store(desired, std::memory_order_relaxed); } void SetNonZero(Scalar desired) const noexcept { atom_.store(desired, std::memory_order_relaxed); } #endif private: #if PROTOBUF_BUILTIN_ATOMIC mutable Scalar atom_; #else mutable std::atomic atom_; #endif }; // TODO: Upgrade to `auto` parameters when we drop C++14 support. template struct GeneratedMessageTraitsT { static constexpr const void* default_instance() { return kDefault; } static constexpr auto StrongPointer() { return default_instance(); } }; template struct FallbackMessageTraits { static const void* default_instance() { return T::default_instance(); } // We can't make a constexpr pointer to the default, so use a function pointer // instead. static constexpr auto StrongPointer() { return &T::default_instance; } }; // Traits for message T. // We use a class scope variable template, which can be specialized with a // different type in a non-defining declaration. // We need non-defining declarations because we might have duplicates of the // same trait specification on each dependent coming from different .proto.h // files. struct MessageTraitsImpl { template static FallbackMessageTraits value; }; template using MessageTraits = decltype(MessageTraitsImpl::value); // For MessageLite to friend. auto GetClassData(const MessageLite& msg); class SwapFieldHelper; // See parse_context.h for explanation class ParseContext; struct DescriptorTable; class DescriptorPoolExtensionFinder; class ExtensionSet; class LazyField; class RepeatedPtrFieldBase; class TcParser; struct TcParseTableBase; class WireFormatLite; class WeakFieldMap; class RustMapHelper; // We compute sizes as size_t but cache them as int. This function converts a // computed size to a cached size. Since we don't proceed with serialization // if the total size was > INT_MAX, it is not important what this function // returns for inputs > INT_MAX. However this case should not error or // ABSL_CHECK-fail, because the full size_t resolution is still returned from // ByteSizeLong() and checked against INT_MAX; we can catch the overflow // there. inline int ToCachedSize(size_t size) { return static_cast(size); } // We mainly calculate sizes in terms of size_t, but some functions that // compute sizes return "int". These int sizes are expected to always be // positive. This function is more efficient than casting an int to size_t // directly on 64-bit platforms because it avoids making the compiler emit a // sign extending instruction, which we don't want and don't want to pay for. inline size_t FromIntSize(int size) { // Convert to unsigned before widening so sign extension is not necessary. return static_cast(size); } // For cases where a legacy function returns an integer size. We ABSL_DCHECK() // that the conversion will fit within an integer; if this is false then we // are losing information. inline int ToIntSize(size_t size) { ABSL_DCHECK_LE(size, static_cast(INT_MAX)); return static_cast(size); } #if defined(PROTOBUF_FUTURE_STRING_VIEW_RETURN_TYPE) using GetTypeNameReturnType = absl::string_view; #else using GetTypeNameReturnType = std::string; #endif // Default empty string object. Don't use this directly. Instead, call // GetEmptyString() to get the reference. This empty string is aligned with a // minimum alignment of 8 bytes to match the requirement of ArenaStringPtr. PROTOBUF_EXPORT extern ExplicitlyConstructedArenaString fixed_address_empty_string; PROTOBUF_EXPORT constexpr const std::string& GetEmptyStringAlreadyInited() { return fixed_address_empty_string.get(); } PROTOBUF_EXPORT size_t StringSpaceUsedExcludingSelfLong(const std::string& str); struct ClassDataFull; // Note: The order of arguments in the functions is chosen so that it has // the same ABI as the member function that calls them. Eg the `this` // pointer becomes the first argument in the free function. // // Future work: // We could save more data by omitting any optional pointer that would // otherwise be null. We can have some metadata in ClassData telling us if we // have them and their offset. struct PROTOBUF_EXPORT ClassData { const MessageLite* prototype; const internal::TcParseTableBase* tc_table; void (*on_demand_register_arena_dtor)(MessageLite& msg, Arena& arena); bool (*is_initialized)(const MessageLite&); void (*merge_to_from)(MessageLite& to, const MessageLite& from_msg); internal::MessageCreator message_creator; #if defined(PROTOBUF_CUSTOM_VTABLE) void (*destroy_message)(MessageLite& msg); void (MessageLite::*clear)(); size_t (*byte_size_long)(const MessageLite&); uint8_t* (*serialize)(const MessageLite& msg, uint8_t* ptr, io::EpsCopyOutputStream* stream); #endif // PROTOBUF_CUSTOM_VTABLE // Offset of the CachedSize member. uint32_t cached_size_offset; // LITE objects (ie !descriptor_methods) collocate their name as a // char[] just beyond the ClassData. bool is_lite; bool is_dynamic = false; // In normal mode we have the small constructor to avoid the cost in // codegen. #if !defined(PROTOBUF_CUSTOM_VTABLE) constexpr ClassData( const MessageLite* prototype, const internal::TcParseTableBase* tc_table, void (*on_demand_register_arena_dtor)(MessageLite&, Arena&), bool (*is_initialized)(const MessageLite&), void (*merge_to_from)(MessageLite& to, const MessageLite& from_msg), internal::MessageCreator message_creator, uint32_t cached_size_offset, bool is_lite ) : prototype(prototype), tc_table(tc_table), on_demand_register_arena_dtor(on_demand_register_arena_dtor), is_initialized(is_initialized), merge_to_from(merge_to_from), message_creator(message_creator), cached_size_offset(cached_size_offset), is_lite(is_lite) { } #endif // !PROTOBUF_CUSTOM_VTABLE // But we always provide the full constructor even in normal mode to make // helper code simpler. constexpr ClassData( const MessageLite* prototype, const internal::TcParseTableBase* tc_table, void (*on_demand_register_arena_dtor)(MessageLite&, Arena&), bool (*is_initialized)(const MessageLite&), void (*merge_to_from)(MessageLite& to, const MessageLite& from_msg), internal::MessageCreator message_creator, void (*destroy_message)(MessageLite& msg), // void (MessageLite::*clear)(), size_t (*byte_size_long)(const MessageLite&), uint8_t* (*serialize)(const MessageLite& msg, uint8_t* ptr, io::EpsCopyOutputStream* stream), uint32_t cached_size_offset, bool is_lite ) : prototype(prototype), tc_table(tc_table), on_demand_register_arena_dtor(on_demand_register_arena_dtor), is_initialized(is_initialized), merge_to_from(merge_to_from), message_creator(message_creator), #if defined(PROTOBUF_CUSTOM_VTABLE) destroy_message(destroy_message), clear(clear), byte_size_long(byte_size_long), serialize(serialize), #endif // PROTOBUF_CUSTOM_VTABLE cached_size_offset(cached_size_offset), is_lite(is_lite) { } const ClassDataFull& full() const; MessageLite* New(Arena* arena) const { return message_creator.New(prototype, prototype, arena); } MessageLite* PlacementNew(void* mem, Arena* arena) const { return message_creator.PlacementNew(prototype, prototype, mem, arena); } uint32_t allocation_size() const { return message_creator.allocation_size(); } uint8_t alignment() const { return message_creator.alignment(); } }; template struct ClassDataLite { ClassData header; const char type_name[N]; constexpr const ClassData* base() const { return &header; } }; // We use a secondary vtable for descriptor based methods. This way ClassData // does not grow with the number of descriptor methods. This avoids extra // costs in MessageLite. struct PROTOBUF_EXPORT DescriptorMethods { absl::string_view (*get_type_name)(const ClassData* data); std::string (*initialization_error_string)(const MessageLite&); const internal::TcParseTableBase* (*get_tc_table)(const MessageLite&); size_t (*space_used_long)(const MessageLite&); std::string (*debug_string)(const MessageLite&); }; struct PROTOBUF_EXPORT ClassDataFull : ClassData { constexpr ClassDataFull(ClassData base, const DescriptorMethods* descriptor_methods, const internal::DescriptorTable* descriptor_table, void (*get_metadata_tracker)()) : ClassData(base), descriptor_methods(descriptor_methods), descriptor_table(descriptor_table), reflection(), descriptor(), get_metadata_tracker(get_metadata_tracker) {} constexpr const ClassData* base() const { return this; } const DescriptorMethods* descriptor_methods; // Codegen types will provide a DescriptorTable to do lazy // registration/initialization of the reflection objects. // Other types, like DynamicMessage, keep the table as null but eagerly // populate `reflection`/`descriptor` fields. const internal::DescriptorTable* descriptor_table; // Accesses are protected by the once_flag in `descriptor_table`. When the // table is null these are populated from the beginning and need to // protection. mutable const Reflection* reflection; mutable const Descriptor* descriptor; // When an access tracker is installed, this function notifies the tracker // that GetMetadata was called. void (*get_metadata_tracker)(); }; inline const ClassDataFull& ClassData::full() const { ABSL_DCHECK(!is_lite); return *static_cast(this); } } // namespace internal // Interface to light weight protocol messages. // // This interface is implemented by all protocol message objects. Non-lite // messages additionally implement the Message interface, which is a // subclass of MessageLite. Use MessageLite instead when you only need // the subset of features which it supports -- namely, nothing that uses // descriptors or reflection. You can instruct the protocol compiler // to generate classes which implement only MessageLite, not the full // Message interface, by adding the following line to the .proto file: // // option optimize_for = LITE_RUNTIME; // // This is particularly useful on resource-constrained systems where // the full protocol buffers runtime library is too big. // // Note that on non-constrained systems (e.g. servers) when you need // to link in lots of protocol definitions, a better way to reduce // total code footprint is to use optimize_for = CODE_SIZE. This // will make the generated code smaller while still supporting all the // same features (at the expense of speed). optimize_for = LITE_RUNTIME // is best when you only have a small number of message types linked // into your binary, in which case the size of the protocol buffers // runtime itself is the biggest problem. // // Users must not derive from this class. Only the protocol compiler and // the internal library are allowed to create subclasses. class PROTOBUF_EXPORT MessageLite { public: MessageLite(const MessageLite&) = delete; MessageLite& operator=(const MessageLite&) = delete; PROTOBUF_VIRTUAL ~MessageLite() = default; // Basic Operations ------------------------------------------------ // Get the name of this message type, e.g. "foo.bar.BazProto". internal::GetTypeNameReturnType GetTypeName() const; // Construct a new instance of the same type. Ownership is passed to the // caller. MessageLite* New() const { return New(nullptr); } // Construct a new instance on the arena. Ownership is passed to the caller // if arena is a nullptr. MessageLite* New(Arena* arena) const; // Returns the arena, if any, that directly owns this message and its internal // memory (Arena::Own is different in that the arena doesn't directly own the // internal memory). This method is used in proto's implementation for // swapping, moving and setting allocated, for deciding whether the ownership // of this message or its internal memory could be changed. Arena* GetArena() const { return _internal_metadata_.arena(); } // Clear all fields of the message and set them to their default values. // Clear() assumes that any memory allocated to hold parts of the message // will likely be needed again, so the memory used may not be freed. // To ensure that all memory used by a Message is freed, you must delete it. #if defined(PROTOBUF_CUSTOM_VTABLE) void Clear() { (this->*_class_data_->clear)(); } #else virtual void Clear() = 0; #endif // PROTOBUF_CUSTOM_VTABLE // Quickly check if all required fields have values set. bool IsInitialized() const; // This is not implemented for Lite messages -- it just returns "(cannot // determine missing fields for lite message)". However, it is implemented // for full messages. See message.h. std::string InitializationErrorString() const; // If |other| is the exact same class as this, calls MergeFrom(). Otherwise, // results are undefined (probably crash). void CheckTypeAndMergeFrom(const MessageLite& other); // These methods return a human-readable summary of the message. Note that // since the MessageLite interface does not support reflection, there is very // little information that these methods can provide. They are shadowed by // methods of the same name on the Message interface which provide much more // information. The methods here are intended primarily to facilitate code // reuse for logic that needs to interoperate with both full and lite protos. // // The format of the returned string is subject to change, so please do not // assume it will remain stable over time. std::string DebugString() const; std::string ShortDebugString() const { return DebugString(); } // MessageLite::DebugString is already Utf8 Safe. This is to add compatibility // with Message. std::string Utf8DebugString() const { return DebugString(); } // Implementation of the `AbslStringify` interface. This adds `DebugString()` // to the sink. Do not rely on exact format. template friend void AbslStringify(Sink& sink, const google::protobuf::MessageLite& msg) { sink.Append(msg.DebugString()); } // Parsing --------------------------------------------------------- // Methods for parsing in protocol buffer format. Most of these are // just simple wrappers around MergeFromCodedStream(). Clear() will be // called before merging the input. // Fill the message with a protocol buffer parsed from the given input // stream. Returns false on a read error or if the input is in the wrong // format. A successful return does not indicate the entire input is // consumed, ensure you call ConsumedEntireMessage() to check that if // applicable. ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromCodedStream( io::CodedInputStream* input); // Like ParseFromCodedStream(), but accepts messages that are missing // required fields. ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromCodedStream( io::CodedInputStream* input); // Read a protocol buffer from the given zero-copy input stream. If // successful, the entire input will be consumed. ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromZeroCopyStream( io::ZeroCopyInputStream* input); // Like ParseFromZeroCopyStream(), but accepts messages that are missing // required fields. ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromZeroCopyStream( io::ZeroCopyInputStream* input); // Parse a protocol buffer from a file descriptor. If successful, the entire // input will be consumed. ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromFileDescriptor( int file_descriptor); // Like ParseFromFileDescriptor(), but accepts messages that are missing // required fields. ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromFileDescriptor( int file_descriptor); // Parse a protocol buffer from a C++ istream. If successful, the entire // input will be consumed. ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromIstream(std::istream* input); // Like ParseFromIstream(), but accepts messages that are missing // required fields. ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromIstream( std::istream* input); // Read a protocol buffer from the given zero-copy input stream, expecting // the message to be exactly "size" bytes long. If successful, exactly // this many bytes will have been consumed from the input. bool MergePartialFromBoundedZeroCopyStream(io::ZeroCopyInputStream* input, int size); // Like ParseFromBoundedZeroCopyStream(), but accepts messages that are // missing required fields. bool MergeFromBoundedZeroCopyStream(io::ZeroCopyInputStream* input, int size); ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromBoundedZeroCopyStream( io::ZeroCopyInputStream* input, int size); // Like ParseFromBoundedZeroCopyStream(), but accepts messages that are // missing required fields. ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromBoundedZeroCopyStream( io::ZeroCopyInputStream* input, int size); // Parses a protocol buffer contained in a string. Returns true on success. // This function takes a string in the (non-human-readable) binary wire // format, matching the encoding output by MessageLite::SerializeToString(). // If you'd like to convert a human-readable string into a protocol buffer // object, see google::protobuf::TextFormat::ParseFromString(). ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromString(absl::string_view data); // Like ParseFromString(), but accepts messages that are missing // required fields. ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromString( absl::string_view data); // Parse a protocol buffer contained in an array of bytes. ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromArray(const void* data, int size); // Like ParseFromArray(), but accepts messages that are missing // required fields. ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromArray(const void* data, int size); // Reads a protocol buffer from the stream and merges it into this // Message. Singular fields read from the what is // already in the Message and repeated fields are appended to those // already present. // // It is the responsibility of the caller to call input->LastTagWas() // (for groups) or input->ConsumedEntireMessage() (for non-groups) after // this returns to verify that the message's end was delimited correctly. // // ParseFromCodedStream() is implemented as Clear() followed by // MergeFromCodedStream(). bool MergeFromCodedStream(io::CodedInputStream* input); // Like MergeFromCodedStream(), but succeeds even if required fields are // missing in the input. // // MergeFromCodedStream() is just implemented as MergePartialFromCodedStream() // followed by IsInitialized(). bool MergePartialFromCodedStream(io::CodedInputStream* input); // Merge a protocol buffer contained in a string. bool MergeFromString(absl::string_view data); // Serialization --------------------------------------------------- // Methods for serializing in protocol buffer format. Most of these // are just simple wrappers around ByteSize() and SerializeWithCachedSizes(). // Write a protocol buffer of this message to the given output. Returns // false on a write error. If the message is missing required fields, // this may ABSL_CHECK-fail. bool SerializeToCodedStream(io::CodedOutputStream* output) const; // Like SerializeToCodedStream(), but allows missing required fields. bool SerializePartialToCodedStream(io::CodedOutputStream* output) const; // Write the message to the given zero-copy output stream. All required // fields must be set. bool SerializeToZeroCopyStream(io::ZeroCopyOutputStream* output) const; // Like SerializeToZeroCopyStream(), but allows missing required fields. bool SerializePartialToZeroCopyStream(io::ZeroCopyOutputStream* output) const; // Serialize the message and store it in the given string. All required // fields must be set. bool SerializeToString(std::string* output) const; // Like SerializeToString(), but allows missing required fields. bool SerializePartialToString(std::string* output) const; // Serialize the message and store it in the given byte array. All required // fields must be set. bool SerializeToArray(void* data, int size) const; // Like SerializeToArray(), but allows missing required fields. bool SerializePartialToArray(void* data, int size) const; // Make a string encoding the message. Is equivalent to calling // SerializeToString() on a string and using that. Returns the empty // string if SerializeToString() would have returned an error. // Note: If you intend to generate many such strings, you may // reduce heap fragmentation by instead re-using the same string // object with calls to SerializeToString(). std::string SerializeAsString() const; // Like SerializeAsString(), but allows missing required fields. std::string SerializePartialAsString() const; // Serialize the message and write it to the given file descriptor. All // required fields must be set. bool SerializeToFileDescriptor(int file_descriptor) const; // Like SerializeToFileDescriptor(), but allows missing required fields. bool SerializePartialToFileDescriptor(int file_descriptor) const; // Serialize the message and write it to the given C++ ostream. All // required fields must be set. bool SerializeToOstream(std::ostream* output) const; // Like SerializeToOstream(), but allows missing required fields. bool SerializePartialToOstream(std::ostream* output) const; // Like SerializeToString(), but appends to the data to the string's // existing contents. All required fields must be set. bool AppendToString(std::string* output) const; // Like AppendToString(), but allows missing required fields. bool AppendPartialToString(std::string* output) const; // Reads a protocol buffer from a Cord and merges it into this message. bool MergeFromCord(const absl::Cord& cord); // Like MergeFromCord(), but accepts messages that are missing // required fields. bool MergePartialFromCord(const absl::Cord& cord); // Parse a protocol buffer contained in a Cord. ABSL_ATTRIBUTE_REINITIALIZES bool ParseFromCord(const absl::Cord& cord); // Like ParseFromCord(), but accepts messages that are missing // required fields. ABSL_ATTRIBUTE_REINITIALIZES bool ParsePartialFromCord( const absl::Cord& cord); // Serialize the message and store it in the given Cord. All required // fields must be set. bool SerializeToCord(absl::Cord* output) const; // Like SerializeToCord(), but allows missing required fields. bool SerializePartialToCord(absl::Cord* output) const; // Make a Cord encoding the message. Is equivalent to calling // SerializeToCord() on a Cord and using that. Returns an empty // Cord if SerializeToCord() would have returned an error. absl::Cord SerializeAsCord() const; // Like SerializeAsCord(), but allows missing required fields. absl::Cord SerializePartialAsCord() const; // Like SerializeToCord(), but appends to the data to the Cord's existing // contents. All required fields must be set. bool AppendToCord(absl::Cord* output) const; // Like AppendToCord(), but allows missing required fields. bool AppendPartialToCord(absl::Cord* output) const; // Computes the serialized size of the message. This recursively calls // ByteSizeLong() on all embedded messages. // // ByteSizeLong() is generally linear in the number of fields defined for the // proto. #if defined(PROTOBUF_CUSTOM_VTABLE) size_t ByteSizeLong() const { return _class_data_->byte_size_long(*this); } #else virtual size_t ByteSizeLong() const = 0; #endif // PROTOBUF_CUSTOM_VTABLE // Legacy ByteSize() API. [[deprecated("Please use ByteSizeLong() instead")]] int ByteSize() const { return internal::ToIntSize(ByteSizeLong()); } // Serializes the message without recomputing the size. The message must not // have changed since the last call to ByteSize(), and the value returned by // ByteSize must be non-negative. Otherwise the results are undefined. void SerializeWithCachedSizes(io::CodedOutputStream* output) const { output->SetCur(_InternalSerialize(output->Cur(), output->EpsCopy())); } // Functions below here are not part of the public interface. It isn't // enforced, but they should be treated as private, and will be private // at some future time. Unfortunately the implementation of the "friend" // keyword in GCC is broken at the moment, but we expect it will be fixed. // Like SerializeWithCachedSizes, but writes directly to *target, returning // a pointer to the byte immediately after the last byte written. "target" // must point at a byte array of at least ByteSize() bytes. Whether to use // deterministic serialization, e.g., maps in sorted order, is determined by // CodedOutputStream::IsDefaultSerializationDeterministic(). uint8_t* SerializeWithCachedSizesToArray(uint8_t* target) const; // Returns the result of the last call to ByteSize(). An embedded message's // size is needed both to serialize it (only true for length-prefixed // submessages) and to compute the outer message's size. Caching // the size avoids computing it multiple times. // Note that the submessage size is unnecessary when using // group encoding / delimited since we have SGROUP/EGROUP bounds. // // ByteSize() does not automatically use the cached size when available // because this would require invalidating it every time the message was // modified, which would be too hard and expensive. (E.g. if a deeply-nested // sub-message is changed, all of its parents' cached sizes would need to be // invalidated, which is too much work for an otherwise inlined setter // method.) #if defined(PROTOBUF_CUSTOM_VTABLE) int GetCachedSize() const { return AccessCachedSize().Get(); } #else int GetCachedSize() const; #endif const char* _InternalParse(const char* ptr, internal::ParseContext* ctx); void OnDemandRegisterArenaDtor(Arena* arena); protected: // Message implementations require access to internally visible API. static constexpr internal::InternalVisibility internal_visibility() { return internal::InternalVisibility{}; } template PROTOBUF_ALWAYS_INLINE static T* DefaultConstruct(Arena* arena) { return static_cast(Arena::DefaultConstruct(arena)); } template static void* NewImpl(const void*, void* mem, Arena* arena) { return ::new (mem) T(arena); } template static constexpr internal::MessageCreator GetNewImpl() { #if defined(__cpp_if_constexpr) if constexpr (internal::EnableCustomNewFor()) { #else // Equally valid code, but might be more work for the compiler if (internal::EnableCustomNewFor()) { #endif return T::InternalNewImpl_(); } else { return internal::MessageCreator(&T::PlacementNew_, sizeof(T), alignof(T)); } } #if defined(PROTOBUF_CUSTOM_VTABLE) template static constexpr auto GetClearImpl() { return static_cast(&T::Clear); } #else // PROTOBUF_CUSTOM_VTABLE // When custom vtables are off we avoid instantiating the functions because we // will not use them anyway. Less work for the compiler. template using GetClearImpl = std::nullptr_t; #endif // PROTOBUF_CUSTOM_VTABLE template PROTOBUF_ALWAYS_INLINE static T* CopyConstruct(Arena* arena, const T& from) { return static_cast(Arena::CopyConstruct(arena, &from)); } const internal::TcParseTableBase* GetTcParseTable() const { auto* data = GetClassData(); ABSL_DCHECK(data != nullptr); auto* tc_table = data->tc_table; if (ABSL_PREDICT_FALSE(tc_table == nullptr)) { ABSL_DCHECK(!data->is_lite); return data->full().descriptor_methods->get_tc_table(*this); } return tc_table; } #if defined(PROTOBUF_CUSTOM_VTABLE) explicit constexpr MessageLite(const internal::ClassData* data) : _class_data_(data) {} explicit MessageLite(Arena* arena, const internal::ClassData* data) : _internal_metadata_(arena), _class_data_(data) {} #else // PROTOBUF_CUSTOM_VTABLE constexpr MessageLite() {} explicit MessageLite(Arena* arena) : _internal_metadata_(arena) {} explicit constexpr MessageLite(const internal::ClassData*) {} explicit MessageLite(Arena* arena, const internal::ClassData*) : _internal_metadata_(arena) {} #endif // PROTOBUF_CUSTOM_VTABLE // GetClassData() returns a pointer to a ClassData struct which // exists in global memory and is unique to each subclass. This uniqueness // property is used in order to quickly determine whether two messages are // of the same type. // // This is a work in progress. There are still some types (eg MapEntry) that // return a default table instead of a unique one. #if defined(PROTOBUF_CUSTOM_VTABLE) const internal::ClassData* GetClassData() const { ::absl::PrefetchToLocalCache(_class_data_); return _class_data_; } #else // PROTOBUF_CUSTOM_VTABLE virtual const internal::ClassData* GetClassData() const = 0; #endif // PROTOBUF_CUSTOM_VTABLE template static auto GetClassDataGenerated() { static_assert(std::is_base_of::value, ""); // We could speed this up if needed by avoiding the function call. // In LTO this is likely inlined, so it might not matter. static_assert( std::is_same::value, ""); return T::default_instance().T::GetClassData(); } internal::InternalMetadata _internal_metadata_; #if defined(PROTOBUF_CUSTOM_VTABLE) const internal::ClassData* _class_data_; #endif // PROTOBUF_CUSTOM_VTABLE // Return the cached size object as described by // ClassData::cached_size_offset. const internal::CachedSize& AccessCachedSize() const { return *reinterpret_cast( reinterpret_cast(this) + GetClassData()->cached_size_offset); } public: enum ParseFlags { // Merge vs. Parse: // Merge: overwrites scalar fields but appends to repeated fields in the // destination; other fields in the destination remain untouched. // Parse: clears all fields in the destination before calling Merge. kMerge = 0, kParse = 1, // Default behaviour vs. Partial: // Default: a missing required field is deemed as parsing failure. // Partial: parse or merge will not give an error if input is missing // required fields. kMergePartial = 2, kParsePartial = 3, // Default behaviour vs. Aliasing: // Default: when merging, pointer is followed and expanded (deep-copy). // Aliasing: when merging, the destination message is allowed to retain // pointers to the original structure (shallow-copy). This mostly // is intended for use with STRING_PIECE. // NOTE: STRING_PIECE is not recommended for new usage. Prefer Cords. kMergeWithAliasing = 4, kParseWithAliasing = 5, kMergePartialWithAliasing = 6, kParsePartialWithAliasing = 7 }; template bool ParseFrom(const T& input); // Fast path when conditions match (ie. non-deterministic) // uint8_t* _InternalSerialize(uint8_t* ptr) const; #if defined(PROTOBUF_CUSTOM_VTABLE) uint8_t* _InternalSerialize(uint8_t* ptr, io::EpsCopyOutputStream* stream) const { return _class_data_->serialize(*this, ptr, stream); } #else // PROTOBUF_CUSTOM_VTABLE virtual uint8_t* _InternalSerialize( uint8_t* ptr, io::EpsCopyOutputStream* stream) const = 0; #endif // PROTOBUF_CUSTOM_VTABLE // Identical to IsInitialized() except that it logs an error message. bool IsInitializedWithErrors() const { if (IsInitialized()) return true; LogInitializationErrorMessage(); return false; } #if defined(PROTOBUF_CUSTOM_VTABLE) void operator delete(MessageLite* msg, std::destroying_delete_t) { msg->DeleteInstance(); } #endif private: friend class FastReflectionMessageMutator; friend class AssignDescriptorsHelper; friend class FastReflectionStringSetter; friend class Message; friend class Reflection; friend class TypeId; friend class compiler::cpp::MessageTableTester; friend class internal::DescriptorPoolExtensionFinder; friend class internal::ExtensionSet; friend class internal::LazyField; friend class internal::SwapFieldHelper; friend class internal::TcParser; friend struct internal::TcParseTableBase; friend class internal::UntypedMapBase; friend class internal::WeakFieldMap; friend class internal::WireFormatLite; friend class internal::RustMapHelper; friend internal::MessageCreator; template friend class Arena::InternalHelper; friend auto internal::GetClassData(const MessageLite& msg); void LogInitializationErrorMessage() const; bool MergeFromImpl(io::CodedInputStream* input, ParseFlags parse_flags); // Runs the destructor for this instance. void DestroyInstance(); // Runs the destructor for this instance and deletes the memory via // `operator delete` void DeleteInstance(); // For tests that need to inspect private _oneof_case_. It is the callers // responsibility to ensure T has the right member. template static uint32_t GetOneofCaseOffsetForTesting() { return offsetof(T, _impl_._oneof_case_); } }; // A `std::type_info` equivalent for protobuf message types. // This class is preferred over using `typeid` for a few reasons: // - It works with RTTI disabled. // - It works for `DynamicMessage` types. // - It works in custom vtable mode. // // Usage: // - Instead of `typeid(Type)` use `TypeId::Get()` // - Instead of `typeid(expr)` use `TypeId::Get(expr)` // // Supports all relationals including <=>, and supports hashing via // `absl::Hash`. class TypeId { public: static TypeId Get(const MessageLite& msg) { return TypeId(msg.GetClassData()); } template static TypeId Get() { return TypeId(MessageLite::GetClassDataGenerated()); } // Name of the message type. // Equivalent to `.GetTypeName()` on the message. absl::string_view name() const; friend constexpr bool operator==(TypeId a, TypeId b) { return a.data_ == b.data_; } friend constexpr bool operator!=(TypeId a, TypeId b) { return !(a == b); } friend constexpr bool operator<(TypeId a, TypeId b) { return a.data_ < b.data_; } friend constexpr bool operator>(TypeId a, TypeId b) { return a.data_ > b.data_; } friend constexpr bool operator<=(TypeId a, TypeId b) { return a.data_ <= b.data_; } friend constexpr bool operator>=(TypeId a, TypeId b) { return a.data_ >= b.data_; } #if defined(__cpp_impl_three_way_comparison) && \ __cpp_impl_three_way_comparison >= 201907L friend constexpr auto operator<=>(TypeId a, TypeId b) { return a.data_ <=> b.data_; } #endif template friend H AbslHashValue(H state, TypeId id) { return H::combine(std::move(state), id.data_); } private: constexpr explicit TypeId(const internal::ClassData* data) : data_(data) {} const internal::ClassData* data_; }; namespace internal { inline auto GetClassData(const MessageLite& msg) { return msg.GetClassData(); } template bool MergeFromImpl(absl::string_view input, MessageLite* msg, const internal::TcParseTableBase* tc_table, MessageLite::ParseFlags parse_flags); extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl( absl::string_view input, MessageLite* msg, const internal::TcParseTableBase* tc_table, MessageLite::ParseFlags parse_flags); extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl( absl::string_view input, MessageLite* msg, const internal::TcParseTableBase* tc_table, MessageLite::ParseFlags parse_flags); template bool MergeFromImpl(io::ZeroCopyInputStream* input, MessageLite* msg, const internal::TcParseTableBase* tc_table, MessageLite::ParseFlags parse_flags); extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl( io::ZeroCopyInputStream* input, MessageLite* msg, const internal::TcParseTableBase* tc_table, MessageLite::ParseFlags parse_flags); extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl( io::ZeroCopyInputStream* input, MessageLite* msg, const internal::TcParseTableBase* tc_table, MessageLite::ParseFlags parse_flags); struct BoundedZCIS { io::ZeroCopyInputStream* zcis; int limit; }; template bool MergeFromImpl(BoundedZCIS input, MessageLite* msg, const internal::TcParseTableBase* tc_table, MessageLite::ParseFlags parse_flags); extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl( BoundedZCIS input, MessageLite* msg, const internal::TcParseTableBase* tc_table, MessageLite::ParseFlags parse_flags); extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE bool MergeFromImpl( BoundedZCIS input, MessageLite* msg, const internal::TcParseTableBase* tc_table, MessageLite::ParseFlags parse_flags); template struct SourceWrapper; template bool MergeFromImpl(const SourceWrapper& input, MessageLite* msg, const internal::TcParseTableBase* tc_table, MessageLite::ParseFlags parse_flags) { return input.template MergeInto(msg, tc_table, parse_flags); } } // namespace internal template bool MessageLite::ParseFrom(const T& input) { if (flags & kParse) Clear(); constexpr bool alias = (flags & kMergeWithAliasing) != 0; const internal::TcParseTableBase* tc_table; PROTOBUF_ALWAYS_INLINE_CALL tc_table = GetTcParseTable(); return internal::MergeFromImpl(input, this, tc_table, flags); } // =================================================================== // Shutdown support. // Shut down the entire protocol buffers library, deleting all static-duration // objects allocated by the library or by generated .pb.cc files. // // There are two reasons you might want to call this: // * You use a draconian definition of "memory leak" in which you expect // every single malloc() to have a corresponding free(), even for objects // which live until program exit. // * You are writing a dynamically-loaded library which needs to clean up // after itself when the library is unloaded. // // It is safe to call this multiple times. However, it is not safe to use // any other part of the protocol buffers library after // ShutdownProtobufLibrary() has been called. Furthermore this call is not // thread safe, user needs to synchronize multiple calls. PROTOBUF_EXPORT void ShutdownProtobufLibrary(); namespace internal { // Register a function to be called when ShutdownProtocolBuffers() is called. PROTOBUF_EXPORT void OnShutdown(void (*func)()); // Run an arbitrary function on an arg PROTOBUF_EXPORT void OnShutdownRun(void (*f)(const void*), const void* arg); template T* OnShutdownDelete(T* p) { OnShutdownRun([](const void* pp) { delete static_cast(pp); }, p); return p; } inline void AssertDownCast(const MessageLite& from, const MessageLite& to) { ABSL_DCHECK(TypeId::Get(from) == TypeId::Get(to)) << "Cannot downcast " << from.GetTypeName() << " to " << to.GetTypeName(); } template PROTOBUF_ALWAYS_INLINE inline MessageLite* MessageCreator::PlacementNew( const MessageLite* prototype_for_func, const MessageLite* prototype_for_copy, void* mem, Arena* arena) const { ABSL_DCHECK_EQ(reinterpret_cast(mem) % alignment_, 0u); const Tag as_tag = tag(); // When the feature is not enabled we skip the `as_tag` check since it is // unnecessary. Except for testing, where we want to test the copy logic even // when we can't use it for real messages. constexpr bool kMustBeFunc = !test_call && !internal::EnableCustomNew(); static_assert(kFunc < 0 && !(kZeroInit < 0) && !(kMemcpy < 0), "Only kFunc must be the only negative value"); if (ABSL_PREDICT_FALSE(kMustBeFunc || as_tag < 0)) { PROTOBUF_DEBUG_COUNTER("MessageCreator.Func").Inc(); return static_cast(func_(prototype_for_func, mem, arena)); } char* dst = static_cast(mem); const size_t size = allocation_size_; const char* src = reinterpret_cast(prototype_for_copy); // These are a bit more efficient than calling normal memset/memcpy because: // - We know the minimum size is 16. We have a fallback for when it is not. // - We can "underflow" the buffer because those are the MessageLite bytes // we will set later. #ifndef PROTO2_OPENSOURCE // This manual handling shows a 1.85% improvement in the parsing // microbenchmark. // TODO: Verify this is still the case. #endif // !PROTO2_OPENSOUCE if (as_tag == kZeroInit) { // Make sure the input is really all zeros. ABSL_DCHECK(std::all_of(src + sizeof(MessageLite), src + size, [](auto c) { return c == 0; })); if (sizeof(MessageLite) != 16) { memset(dst, 0, size); } else if (size <= 32) { memset(dst + size - 16, 0, 16); } else if (size <= 64) { memset(dst + 16, 0, 16); memset(dst + size - 32, 0, 32); } else { for (size_t offset = 16; offset + 64 < size; offset += 64) { absl::PrefetchToLocalCacheForWrite(dst + offset + 64); memset(dst + offset, 0, 64); } memset(dst + size - 64, 0, 64); } } else { ABSL_DCHECK_EQ(+as_tag, +kMemcpy); if (sizeof(MessageLite) != 16) { memcpy(dst, src, size); } else if (size <= 32) { memcpy(dst + size - 16, src + size - 16, 16); } else if (size <= 64) { memcpy(dst + 16, src + 16, 16); memcpy(dst + size - 32, src + size - 32, 32); } else { for (size_t offset = 16; offset + 64 < size; offset += 64) { absl::PrefetchToLocalCache(src + offset + 64); absl::PrefetchToLocalCacheForWrite(dst + offset + 64); memcpy(dst + offset, src + offset, 64); } memcpy(dst + size - 64, src + size - 64, 64); } } if (arena_bits() != 0) { if (as_tag == kZeroInit) { PROTOBUF_DEBUG_COUNTER("MessageCreator.ZeroArena").Inc(); } else { PROTOBUF_DEBUG_COUNTER("MessageCreator.McpyArena").Inc(); } } else { if (as_tag == kZeroInit) { PROTOBUF_DEBUG_COUNTER("MessageCreator.Zero").Inc(); } else { PROTOBUF_DEBUG_COUNTER("MessageCreator.Mcpy").Inc(); } } if (internal::PerformDebugChecks() || arena != nullptr) { if (uintptr_t offsets = arena_bits()) { do { const size_t offset = absl::countr_zero(offsets) * sizeof(Arena*); ABSL_DCHECK_LE(offset + sizeof(Arena*), size); // Verify we are overwriting a null pointer. If we are not, there is a // bug somewhere. ABSL_DCHECK_EQ(*reinterpret_cast(dst + offset), nullptr); memcpy(dst + offset, &arena, sizeof(arena)); offsets &= offsets - 1; } while (offsets != 0); } } // The second memcpy overwrites part of the first, but the compiler should // avoid the double-write. It's easier than trying to avoid the overlap. memcpy(dst, static_cast(prototype_for_copy), sizeof(MessageLite)); memcpy(dst + PROTOBUF_FIELD_OFFSET(MessageLite, _internal_metadata_), &arena, sizeof(arena)); return Launder(reinterpret_cast(mem)); } template PROTOBUF_ALWAYS_INLINE inline MessageLite* MessageCreator::New( const MessageLite* prototype_for_func, const MessageLite* prototype_for_copy, Arena* arena) const { return PlacementNew(prototype_for_func, prototype_for_copy, arena != nullptr ? arena->AllocateAligned(allocation_size_) : ::operator new(allocation_size_), arena); } } // namespace internal std::string ShortFormat(const MessageLite& message_lite); std::string Utf8Format(const MessageLite& message_lite); // Cast functions for message pointer/references. // This is the supported API to cast from a Message/MessageLite to derived // types. These work even when RTTI is disabled on message types. // // The template parameter is simplified and the return type is inferred from the // input. Eg just `DynamicCastMessage(x)` instead of // `DynamicCastMessage(x)`. // // `DynamicCastMessage` is similar to `dynamic_cast`, returns `nullptr` when the // input is not an instance of `T`. The overloads that take a reference will // terminate on mismatch. // // `DownCastMessage` is a lightweight function for downcasting base // `MessageLite` pointer to derived type, where it only does type checking if // !NDEBUG. It should only be used when the caller is certain that the input // message is of instance `T`. template const T* DynamicCastMessage(const MessageLite* from) { static_assert(std::is_base_of::value, ""); // We might avoid the call to T::GetClassData() altogether if T were to // expose the class data pointer. if (from == nullptr || TypeId::Get() != TypeId::Get(*from)) { return nullptr; } return static_cast(from); } template T* DynamicCastMessage(MessageLite* from) { return const_cast( DynamicCastMessage(static_cast(from))); } namespace internal { [[noreturn]] PROTOBUF_EXPORT void FailDynamicCast(const MessageLite& from, const MessageLite& to); } // namespace internal template const T& DynamicCastMessage(const MessageLite& from) { const T* destination_message = DynamicCastMessage(&from); if (ABSL_PREDICT_FALSE(destination_message == nullptr)) { // Move the logging into an out-of-line function to reduce bloat in the // caller. internal::FailDynamicCast(from, T::default_instance()); } return *destination_message; } template T& DynamicCastMessage(MessageLite& from) { return const_cast( DynamicCastMessage(static_cast(from))); } template const T* DownCastMessage(const MessageLite* from) { internal::StrongReferenceToType(); ABSL_DCHECK(DynamicCastMessage(from) == from) << "Cannot downcast " << from->GetTypeName() << " to " << T::default_instance().GetTypeName(); return static_cast(from); } template T* DownCastMessage(MessageLite* from) { return const_cast( DownCastMessage(static_cast(from))); } template const T& DownCastMessage(const MessageLite& from) { return *DownCastMessage(&from); } template T& DownCastMessage(MessageLite& from) { return *DownCastMessage(&from); } template <> inline const MessageLite* DynamicCastMessage(const MessageLite* from) { return from; } template <> inline const MessageLite* DownCastMessage(const MessageLite* from) { return from; } // Deprecated names for the cast functions. // Prefer the ones above. template PROTOBUF_DEPRECATE_AND_INLINE() const T* DynamicCastToGenerated(const MessageLite* from) { return DynamicCastMessage(from); } template PROTOBUF_DEPRECATE_AND_INLINE() T* DynamicCastToGenerated(MessageLite* from) { return DynamicCastMessage(from); } template PROTOBUF_DEPRECATE_AND_INLINE() const T& DynamicCastToGenerated(const MessageLite& from) { return DynamicCastMessage(from); } template PROTOBUF_DEPRECATE_AND_INLINE() T& DynamicCastToGenerated(MessageLite& from) { return DynamicCastMessage(from); } template PROTOBUF_DEPRECATE_AND_INLINE() const T* DownCastToGenerated(const MessageLite* from) { return DownCastMessage(from); } template PROTOBUF_DEPRECATE_AND_INLINE() T* DownCastToGenerated(MessageLite* from) { return DownCastMessage(from); } template PROTOBUF_DEPRECATE_AND_INLINE() const T& DownCastToGenerated(const MessageLite& from) { return DownCastMessage(from); } template PROTOBUF_DEPRECATE_AND_INLINE() T& DownCastToGenerated(MessageLite& from) { return DownCastMessage(from); } } // namespace protobuf } // namespace google #include "google/protobuf/port_undef.inc" #endif // GOOGLE_PROTOBUF_MESSAGE_LITE_H__