DYT/Tool/OpenSceneGraph-3.6.5/include/geos/geom/PrecisionModel.h
2024-12-25 07:49:36 +08:00

375 lines
12 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**********************************************************************
*
* GEOS - Geometry Engine Open Source
* http://geos.osgeo.org
*
* Copyright (C) 2011 Sandro Santilli <strk@kbt.io>
* Copyright (C) 2006 Refractions Research Inc.
*
* This is free software; you can redistribute and/or modify it under
* the terms of the GNU Lesser General Public Licence as published
* by the Free Software Foundation.
* See the COPYING file for more information.
*
**********************************************************************
*
* Last port: geom/PrecisionModel.java r378 (JTS-1.12)
*
**********************************************************************/
#pragma once
#include <geos/geom/Coordinate.h>
#include <geos/export.h>
#include <cassert>
#include <string>
// Forward declarations
namespace geos {
namespace io {
class Unload;
}
namespace geom {
class Coordinate;
}
}
namespace geos {
namespace geom { // geos::geom
/**
* \class PrecisionModel geom.h geos.h
*
* \brief Specifies the precision model of the Coordinate in a Geometry.
*
* In other words, specifies the grid of allowable points for a <code>Geometry</code>.
* A precision model may be <b>floating</b> (PrecisionModel::Type::FLOATING or
* PrecisionModel::Type::FLOATING_SINGLE), in which case normal floating-point value semantics apply.
*
* For a PrecisionModel::Type::FIXED precision model the
* makePrecise(geom::Coordinate) method allows rounding a coordinate to
* a "precise" value; that is, one whose precision is known exactly.
*
* Coordinates are assumed to be precise in geometries.
* That is, the coordinates are assumed to be rounded to the
* precision model given for the geometry.
* All internal operations
* assume that coordinates are rounded to the precision model.
* Constructive methods (such as boolean operations) always round computed
* coordinates to the appropriate precision model.
*
* Three types of precision model are supported:
* - FLOATING - represents full double precision floating point.
* This is the default precision model used in JTS
* - FLOATING_SINGLE - represents single precision floating point.
* - FIXED - represents a model with a fixed number of decimal places.
* A Fixed Precision Model is specified by a scale factor.
* The scale factor specifies the grid which numbers are rounded to.
* Input coordinates are mapped to fixed coordinates according to the
* following equations:
* - jtsPt.x = round( inputPt.x * scale ) / scale
* - jtsPt.y = round( inputPt.y * scale ) / scale
*
* For example, to specify 3 decimal places of precision, use a scale factor
* of 1000. To specify -3 decimal places of precision (i.e. rounding to
* the nearest 1000), use a scale factor of 0.001.
*
* It is also supported to specify a precise grid size
* by providing it as a negative scale factor.
* For example, to specify rounding to the nearest 1000 use a scale factor of -1000.
*
* Coordinates are represented internally as Java double-precision values.
* Java uses the IEEE-394 floating point standard, which
* provides 53 bits of precision. (Thus the maximum precisely representable
* integer is 9,007,199,254,740,992).
*
*/
class GEOS_DLL PrecisionModel {
friend class io::Unload;
public:
/// The types of Precision Model which GEOS supports.
typedef enum {
/**
* Fixed Precision indicates that coordinates have a fixed
* number of decimal places.
* The number of decimal places is determined by the log10
* of the scale factor.
*/
FIXED,
/**
* Floating precision corresponds to the standard Java
* double-precision floating-point representation, which is
* based on the IEEE-754 standard
*/
FLOATING,
/**
* Floating single precision corresponds to the standard Java
* single-precision floating-point representation, which is
* based on the IEEE-754 standard
*/
FLOATING_SINGLE
} Type;
/// Creates a PrecisionModel with a default precision of FLOATING.
PrecisionModel(void);
/// Creates a PrecisionModel specifying an explicit precision model type.
///
/// If the model type is FIXED the scale factor will default to 1.
///
/// @param nModelType the type of the precision model
///
PrecisionModel(Type nModelType);
/** \brief
* Creates a <code>PrecisionModel</code> with Fixed precision.
*
* Fixed-precision coordinates are represented as precise internal
* coordinates, which are rounded to the grid defined by the
* scale factor.
*
* @param newScale amount by which to multiply a coordinate after
* subtracting the offset, to obtain a precise coordinate
* @param newOffsetX not used.
* @param newOffsetY not used.
*
* @deprecated offsets are no longer supported, since internal
* representation is rounded floating point
*/
PrecisionModel(double newScale, double newOffsetX, double newOffsetY);
/**
* \brief
* Creates a PrecisionModel with Fixed precision.
*
* Fixed-precision coordinates are represented as precise
* internal coordinates which are rounded to the grid defined
* by the scale factor.
* The provided scale may be negative, to specify an exact grid size.
* The scale is then computed as the reciprocal.
*
* @param newScale amount by which to multiply a coordinate
* after subtracting the offset, to obtain a precise coordinate. Must be non-zero.
*/
PrecisionModel(double newScale);
/// The maximum precise value representable in a double.
///
/// Since IEE754 double-precision numbers allow 53 bits of mantissa,
/// the value is equal to 2^53 - 1.
/// This provides <i>almost</i> 16 decimal digits of precision.
////
static const double maximumPreciseValue;
/** \brief
* Rounds a numeric value to the PrecisionModel grid.
*
* Asymmetric Arithmetic Rounding is used, to provide
* uniform rounding behaviour no matter where the number is
* on the number line.
*
* <b>Note:</b> Java's <code>Math#rint</code> uses the "Banker's Rounding" algorithm,
* which is not suitable for precision operations elsewhere in JTS.
*/
double makePrecise(double val) const;
/// Rounds the given Coordinate to the PrecisionModel grid.
void makePrecise(CoordinateXY& coord) const
{
// optimization for full precision
if(modelType == FLOATING) {
return;
}
coord.x = makePrecise(coord.x);
coord.y = makePrecise(coord.y);
};
void makePrecise(CoordinateXY* coord) const
{
assert(coord);
return makePrecise(*coord);
};
/// Tests whether the precision model supports floating point
///
/// @return <code>true</code> if the precision model supports
/// floating point
///
bool isFloating() const;
/// \brief
/// Returns the maximum number of significant digits provided by
/// this precision model.
///
/// Intended for use by routines which need to print out precise
/// values.
///
/// @return the maximum number of decimal places provided by this
/// precision model
///
int getMaximumSignificantDigits() const;
/// Gets the type of this PrecisionModel
///
/// @return the type of this PrecisionModel
///
Type getType() const
{
return modelType;
};
/// Returns the multiplying factor used to obtain a precise coordinate.
double getScale() const
{
assert(!(scale < 0));
return scale;
};
/**
* Computes the grid size for a fixed precision model.
* This is equal to the reciprocal of the scale factor.
* If the grid size has been set explicitly (via a negative scale factor)
* it will be returned.
*
* @return the grid size at a fixed precision scale.
*/
double getGridSize() const
{
if (isFloating())
return DoubleNotANumber;
if (gridSize != 0)
return gridSize;
return 1.0 / scale;
};
/// Returns the x-offset used to obtain a precise coordinate.
///
/// @return the amount by which to subtract the x-coordinate before
/// multiplying by the scale
/// @deprecated Offsets are no longer used
///
double getOffsetX() const;
/// Returns the y-offset used to obtain a precise coordinate.
///
/// @return the amount by which to subtract the y-coordinate before
/// multiplying by the scale
/// @deprecated Offsets are no longer used
///
double getOffsetY() const;
/*
* Sets ´internal` to the precise representation of `external`.
*
* @param external the original coordinate
* @param internal the coordinate whose values will be changed to the
* precise representation of <code>external</code>
* @deprecated use makePrecise instead
*/
//void toInternal(const Coordinate& external, Coordinate* internal) const;
/*
* Returns the precise representation of <code>external</code>.
*
*@param external the original coordinate
*@return
* the coordinate whose values will be changed to the precise
* representation of <code>external</code>
* @deprecated use makePrecise instead
*/
//Coordinate* toInternal(const Coordinate& external) const;
/*
* Returns the external representation of <code>internal</code>.
*
*@param internal the original coordinate
*@return the coordinate whose values will be changed to the
* external representation of <code>internal</code>
* @deprecated no longer needed, since internal representation is same as external representation
*/
//Coordinate* toExternal(const Coordinate& internal) const;
/*
* Sets <code>external</code> to the external representation of
* <code>internal</code>.
*
* @param internal the original coordinate
* @param external
* the coordinate whose values will be changed to the
* external representation of <code>internal</code>
* @deprecated no longer needed, since internal representation is same as external representation
*/
//void toExternal(const Coordinate& internal, Coordinate* external) const;
std::string toString() const;
/// \brief
/// Compares this PrecisionModel object with the specified object
/// for order.
///
/// A PrecisionModel is greater than another if it provides greater
/// precision.
/// The comparison is based on the value returned by the
/// getMaximumSignificantDigits method.
/// This comparison is not strictly accurate when comparing floating
/// precision models to fixed models;
/// however, it is correct when both models are either floating or
/// fixed.
///
/// @param other the PrecisionModel with which this PrecisionModel
/// is being compared
/// @return a negative integer, zero, or a positive integer as this
/// PrecisionModel is less than, equal to, or greater than the
/// specified PrecisionModel.
///
int compareTo(const PrecisionModel* other) const;
private:
/** \brief
* Sets the multiplying factor used to obtain a precise coordinate.
*
* This method is private because PrecisionModel is intended to
* be an immutable (value) type.
*
*/
void setScale(double newScale);
// throw IllegalArgumentException
/** \brief
* Snaps a value to nearest integer, if within tolerance.
*/
static double snapToInt(double val, double tolerance);
Type modelType;
/**
* The scale factor which determines the number of decimal places in fixed precision.
*/
double scale;
/**
* If non-zero, the precise grid size specified.
* In this case, the scale is also valid and is computed from the grid size.
* If zero, the scale is used to compute the grid size where needed.
*/
double gridSize = 0.0;
};
// Equality operator for PrecisionModel, deprecate it ?
//inline bool operator==(const PrecisionModel& a, const PrecisionModel& b);
} // namespace geos::geom
} // namespace geos