1447 lines
51 KiB
C++
1447 lines
51 KiB
C++
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file or at
|
|
// https://developers.google.com/open-source/licenses/bsd
|
|
|
|
// Author: kenton@google.com (Kenton Varda)
|
|
// Based on original Protocol Buffers design by
|
|
// Sanjay Ghemawat, Jeff Dean, and others.
|
|
//
|
|
// RepeatedField and RepeatedPtrField are used by generated protocol message
|
|
// classes to manipulate repeated fields. These classes are very similar to
|
|
// STL's vector, but include a number of optimizations found to be useful
|
|
// specifically in the case of Protocol Buffers. RepeatedPtrField is
|
|
// particularly different from STL vector as it manages ownership of the
|
|
// pointers that it contains.
|
|
//
|
|
// This header covers RepeatedField.
|
|
|
|
#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
|
|
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "absl/base/attributes.h"
|
|
#include "absl/base/dynamic_annotations.h"
|
|
#include "absl/base/optimization.h"
|
|
#include "absl/log/absl_check.h"
|
|
#include "absl/meta/type_traits.h"
|
|
#include "absl/strings/cord.h"
|
|
#include "google/protobuf/arena.h"
|
|
#include "google/protobuf/generated_enum_util.h"
|
|
#include "google/protobuf/internal_visibility.h"
|
|
#include "google/protobuf/message_lite.h"
|
|
#include "google/protobuf/port.h"
|
|
#include "google/protobuf/repeated_ptr_field.h"
|
|
|
|
// Must be included last.
|
|
#include "google/protobuf/port_def.inc"
|
|
|
|
#ifdef SWIG
|
|
#error "You cannot SWIG proto headers"
|
|
#endif
|
|
|
|
namespace google {
|
|
namespace protobuf {
|
|
|
|
class Message;
|
|
class UnknownField; // For the allowlist
|
|
|
|
namespace internal {
|
|
|
|
template <typename T, int kHeapRepHeaderSize>
|
|
constexpr int RepeatedFieldLowerClampLimit() {
|
|
// The header is padded to be at least `sizeof(T)` when it would be smaller
|
|
// otherwise.
|
|
static_assert(sizeof(T) <= kHeapRepHeaderSize, "");
|
|
// We want to pad the minimum size to be a power of two bytes, including the
|
|
// header.
|
|
// The first allocation is kHeapRepHeaderSize bytes worth of elements for a
|
|
// total of 2*kHeapRepHeaderSize bytes. For an 8-byte header, we allocate 8
|
|
// bool, 2 ints, or 1 int64.
|
|
return kHeapRepHeaderSize / sizeof(T);
|
|
}
|
|
|
|
// kRepeatedFieldUpperClampLimit is the lowest signed integer value that
|
|
// overflows when multiplied by 2 (which is undefined behavior). Sizes above
|
|
// this will clamp to the maximum int value instead of following exponential
|
|
// growth when growing a repeated field.
|
|
#if defined(__cpp_inline_variables)
|
|
inline constexpr int kRepeatedFieldUpperClampLimit =
|
|
#else
|
|
constexpr int kRepeatedFieldUpperClampLimit =
|
|
#endif
|
|
(std::numeric_limits<int>::max() / 2) + 1;
|
|
|
|
template <typename Element>
|
|
class RepeatedIterator;
|
|
|
|
// Sentinel base class.
|
|
struct RepeatedFieldBase {};
|
|
|
|
// We can't skip the destructor for, e.g., arena allocated RepeatedField<Cord>.
|
|
template <typename Element,
|
|
bool Trivial = Arena::is_destructor_skippable<Element>::value>
|
|
struct RepeatedFieldDestructorSkippableBase : RepeatedFieldBase {};
|
|
|
|
template <typename Element>
|
|
struct RepeatedFieldDestructorSkippableBase<Element, true> : RepeatedFieldBase {
|
|
using DestructorSkippable_ = void;
|
|
};
|
|
|
|
template <size_t kMinSize>
|
|
struct HeapRep {
|
|
// Avoid 'implicitly deleted dtor' warnings on certain compilers.
|
|
~HeapRep() = delete;
|
|
|
|
void* elements() { return this + 1; }
|
|
|
|
// Align to 8 as sanitizers are picky on the alignment of containers to start
|
|
// at 8 byte offsets even when compiling for 32 bit platforms.
|
|
union {
|
|
alignas(8) Arena* arena;
|
|
// We pad the header to be at least `sizeof(Element)` so that we have
|
|
// power-of-two sized allocations, which enables Arena optimizations.
|
|
char padding[kMinSize];
|
|
};
|
|
};
|
|
|
|
// We use small object optimization (SOO) to store elements inline when possible
|
|
// for small repeated fields. We do so in order to avoid memory indirections.
|
|
// Note that SOO is disabled on 32-bit platforms due to alignment limitations.
|
|
|
|
// SOO data is stored in the same space as the size/capacity ints.
|
|
enum { kSooCapacityBytes = 2 * sizeof(int) };
|
|
|
|
// Arena/elements pointers are aligned to at least kSooPtrAlignment bytes so we
|
|
// can use the lower bits to encode whether we're in SOO mode and if so, the
|
|
// SOO size. NOTE: we also tried using all kSooPtrMask bits to encode SOO size
|
|
// and use all ones as a sentinel value for non-SOO mode, but that was slower in
|
|
// benchmarks/loadtests.
|
|
enum { kSooPtrAlignment = 8 };
|
|
// The mask for the size bits in SOO mode, and also a sentinel value indicating
|
|
// that the field is not in SOO mode.
|
|
enum { kSooPtrMask = ~(kSooPtrAlignment - 1) };
|
|
// This bit is 0 when in SOO mode and 1 when in non-SOO mode.
|
|
enum { kNotSooBit = kSooPtrAlignment >> 1 };
|
|
// These bits are used to encode the size when in SOO mode (sizes are 0-3).
|
|
enum { kSooSizeMask = kNotSooBit - 1 };
|
|
|
|
// The number of elements that can be stored in the SOO rep. On 64-bit
|
|
// platforms, this is 1 for int64_t, 2 for int32_t, 3 for bool, and 0 for
|
|
// absl::Cord. We return 0 to disable SOO on 32-bit platforms.
|
|
constexpr int SooCapacityElements(size_t element_size) {
|
|
if (sizeof(void*) < 8) return 0;
|
|
return std::min<int>(kSooCapacityBytes / element_size, kSooSizeMask);
|
|
}
|
|
|
|
struct LongSooRep {
|
|
// Returns char* rather than void* so callers can do pointer arithmetic.
|
|
char* elements() const {
|
|
auto ret = reinterpret_cast<char*>(elements_int & kSooPtrMask);
|
|
ABSL_DCHECK_NE(ret, nullptr);
|
|
return ret;
|
|
}
|
|
|
|
uintptr_t elements_int;
|
|
int size;
|
|
int capacity;
|
|
};
|
|
struct ShortSooRep {
|
|
constexpr ShortSooRep() = default;
|
|
explicit ShortSooRep(Arena* arena)
|
|
: arena_and_size(reinterpret_cast<uintptr_t>(arena)) {
|
|
ABSL_DCHECK_EQ(size(), 0);
|
|
}
|
|
|
|
int size() const { return arena_and_size & kSooSizeMask; }
|
|
bool is_soo() const { return (arena_and_size & kNotSooBit) == 0; }
|
|
|
|
uintptr_t arena_and_size = 0;
|
|
union {
|
|
char data[kSooCapacityBytes];
|
|
// NOTE: in some language versions, we can't have a constexpr constructor
|
|
// if we don't initialize all fields, but `data` doesn't need to be
|
|
// initialized so initialize an empty dummy variable instead.
|
|
std::true_type dummy = {};
|
|
};
|
|
};
|
|
struct SooRep {
|
|
constexpr SooRep() : short_rep() {}
|
|
explicit SooRep(Arena* arena) : short_rep(arena) {}
|
|
|
|
bool is_soo() const {
|
|
static_assert(sizeof(LongSooRep) == sizeof(ShortSooRep), "");
|
|
static_assert(offsetof(SooRep, long_rep) == offsetof(SooRep, short_rep),
|
|
"");
|
|
static_assert(offsetof(LongSooRep, elements_int) ==
|
|
offsetof(ShortSooRep, arena_and_size),
|
|
"");
|
|
return short_rep.is_soo();
|
|
}
|
|
Arena* soo_arena() const {
|
|
ABSL_DCHECK(is_soo());
|
|
return reinterpret_cast<Arena*>(short_rep.arena_and_size & kSooPtrMask);
|
|
}
|
|
int size(bool is_soo) const {
|
|
ABSL_DCHECK_EQ(is_soo, this->is_soo());
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
|
|
#endif
|
|
return is_soo ? short_rep.size() : long_rep.size;
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
void set_size(bool is_soo, int size) {
|
|
ABSL_DCHECK_EQ(is_soo, this->is_soo());
|
|
if (is_soo) {
|
|
ABSL_DCHECK_LE(size, kSooSizeMask);
|
|
short_rep.arena_and_size &= kSooPtrMask;
|
|
short_rep.arena_and_size |= size;
|
|
} else {
|
|
long_rep.size = size;
|
|
}
|
|
}
|
|
// Initializes the SooRep in non-SOO mode with the given capacity and heap
|
|
// allocation.
|
|
void set_non_soo(bool was_soo, int capacity, void* elements) {
|
|
ABSL_DCHECK_EQ(was_soo, is_soo());
|
|
ABSL_DCHECK_NE(elements, nullptr);
|
|
ABSL_DCHECK_EQ(reinterpret_cast<uintptr_t>(elements) % kSooPtrAlignment,
|
|
uintptr_t{0});
|
|
if (was_soo) long_rep.size = short_rep.size();
|
|
long_rep.capacity = capacity;
|
|
long_rep.elements_int = reinterpret_cast<uintptr_t>(elements) | kNotSooBit;
|
|
}
|
|
|
|
union {
|
|
LongSooRep long_rep;
|
|
ShortSooRep short_rep;
|
|
};
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// RepeatedField is used to represent repeated fields of a primitive type (in
|
|
// other words, everything except strings and nested Messages). Most users will
|
|
// not ever use a RepeatedField directly; they will use the get-by-index,
|
|
// set-by-index, and add accessors that are generated for all repeated fields.
|
|
// Actually, in addition to primitive types, we use RepeatedField for repeated
|
|
// Cords, because the Cord class is in fact just a reference-counted pointer.
|
|
// We have to specialize several methods in the Cord case to get the memory
|
|
// management right; e.g. swapping when appropriate, etc.
|
|
template <typename Element>
|
|
class RepeatedField final
|
|
: private internal::RepeatedFieldDestructorSkippableBase<Element> {
|
|
static_assert(
|
|
alignof(Arena) >= alignof(Element),
|
|
"We only support types that have an alignment smaller than Arena");
|
|
static_assert(!std::is_const<Element>::value,
|
|
"We do not support const value types.");
|
|
static_assert(!std::is_volatile<Element>::value,
|
|
"We do not support volatile value types.");
|
|
static_assert(!std::is_pointer<Element>::value,
|
|
"We do not support pointer value types.");
|
|
static_assert(!std::is_reference<Element>::value,
|
|
"We do not support reference value types.");
|
|
static constexpr PROTOBUF_ALWAYS_INLINE void StaticValidityCheck() {
|
|
static_assert(
|
|
absl::disjunction<internal::is_supported_integral_type<Element>,
|
|
internal::is_supported_floating_point_type<Element>,
|
|
std::is_same<absl::Cord, Element>,
|
|
std::is_same<UnknownField, Element>,
|
|
is_proto_enum<Element>>::value,
|
|
"We only support non-string scalars in RepeatedField.");
|
|
}
|
|
|
|
public:
|
|
using value_type = Element;
|
|
using size_type = int;
|
|
using difference_type = ptrdiff_t;
|
|
using reference = Element&;
|
|
using const_reference = const Element&;
|
|
using pointer = Element*;
|
|
using const_pointer = const Element*;
|
|
using iterator = internal::RepeatedIterator<Element>;
|
|
using const_iterator = internal::RepeatedIterator<const Element>;
|
|
using reverse_iterator = std::reverse_iterator<iterator>;
|
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
|
|
|
constexpr RepeatedField();
|
|
RepeatedField(const RepeatedField& rhs) : RepeatedField(nullptr, rhs) {}
|
|
|
|
// TODO: make this constructor private
|
|
explicit RepeatedField(Arena* arena);
|
|
|
|
template <typename Iter,
|
|
typename = typename std::enable_if<std::is_constructible<
|
|
Element, decltype(*std::declval<Iter>())>::value>::type>
|
|
RepeatedField(Iter begin, Iter end);
|
|
|
|
// Arena enabled constructors: for internal use only.
|
|
RepeatedField(internal::InternalVisibility, Arena* arena)
|
|
: RepeatedField(arena) {}
|
|
RepeatedField(internal::InternalVisibility, Arena* arena,
|
|
const RepeatedField& rhs)
|
|
: RepeatedField(arena, rhs) {}
|
|
|
|
RepeatedField& operator=(const RepeatedField& other)
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
|
|
RepeatedField(RepeatedField&& rhs) noexcept
|
|
: RepeatedField(nullptr, std::move(rhs)) {}
|
|
RepeatedField& operator=(RepeatedField&& other) noexcept
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
|
|
~RepeatedField();
|
|
|
|
bool empty() const;
|
|
int size() const;
|
|
|
|
const_reference Get(int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
pointer Mutable(int index) ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
|
|
const_reference operator[](int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return Get(index);
|
|
}
|
|
reference operator[](int index) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return *Mutable(index);
|
|
}
|
|
|
|
const_reference at(int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
reference at(int index) ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
|
|
void Set(int index, const Element& value);
|
|
void Add(Element value);
|
|
|
|
// Appends a new element and returns a pointer to it.
|
|
// The new element is uninitialized if |Element| is a POD type.
|
|
pointer Add() ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
// Appends elements in the range [begin, end) after reserving
|
|
// the appropriate number of elements.
|
|
template <typename Iter>
|
|
void Add(Iter begin, Iter end);
|
|
|
|
// Removes the last element in the array.
|
|
void RemoveLast();
|
|
|
|
// Extracts elements with indices in "[start .. start+num-1]".
|
|
// Copies them into "elements[0 .. num-1]" if "elements" is not nullptr.
|
|
// Caution: also moves elements with indices [start+num ..].
|
|
// Calling this routine inside a loop can cause quadratic behavior.
|
|
void ExtractSubrange(int start, int num, Element* elements);
|
|
|
|
ABSL_ATTRIBUTE_REINITIALIZES void Clear();
|
|
|
|
// Appends the elements from `other` after this instance.
|
|
// The end result length will be `other.size() + this->size()`.
|
|
void MergeFrom(const RepeatedField& other);
|
|
|
|
// Replaces the contents with a copy of the elements from `other`.
|
|
ABSL_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedField& other);
|
|
|
|
// Replaces the contents with RepeatedField(begin, end).
|
|
template <typename Iter>
|
|
ABSL_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end);
|
|
|
|
// Reserves space to expand the field to at least the given size. If the
|
|
// array is grown, it will always be at least doubled in size.
|
|
void Reserve(int new_size);
|
|
|
|
// Resizes the RepeatedField to a new, smaller size. This is O(1).
|
|
// Except for RepeatedField<Cord>, for which it is O(size-new_size).
|
|
void Truncate(int new_size);
|
|
|
|
void AddAlreadyReserved(Element value);
|
|
int Capacity() const;
|
|
|
|
// Adds `n` elements to this instance asserting there is enough capacity.
|
|
// The added elements are uninitialized if `Element` is trivial.
|
|
pointer AddAlreadyReserved() ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
pointer AddNAlreadyReserved(int n) ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
|
|
// Like STL resize. Uses value to fill appended elements.
|
|
// Like Truncate() if new_size <= size(), otherwise this is
|
|
// O(new_size - size()).
|
|
void Resize(size_type new_size, const Element& value);
|
|
|
|
// Gets the underlying array. This pointer is possibly invalidated by
|
|
// any add or remove operation.
|
|
pointer mutable_data() ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
const_pointer data() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
|
|
// Swaps entire contents with "other". If they are separate arenas, then
|
|
// copies data between each other.
|
|
void Swap(RepeatedField* other);
|
|
|
|
// Swaps two elements.
|
|
void SwapElements(int index1, int index2);
|
|
|
|
iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
|
|
// Reverse iterator support
|
|
reverse_iterator rbegin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return reverse_iterator(end());
|
|
}
|
|
const_reverse_iterator rbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return const_reverse_iterator(end());
|
|
}
|
|
reverse_iterator rend() ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return reverse_iterator(begin());
|
|
}
|
|
const_reverse_iterator rend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return const_reverse_iterator(begin());
|
|
}
|
|
|
|
// Returns the number of bytes used by the repeated field, excluding
|
|
// sizeof(*this)
|
|
size_t SpaceUsedExcludingSelfLong() const;
|
|
|
|
int SpaceUsedExcludingSelf() const {
|
|
return internal::ToIntSize(SpaceUsedExcludingSelfLong());
|
|
}
|
|
|
|
// Removes the element referenced by position.
|
|
//
|
|
// Returns an iterator to the element immediately following the removed
|
|
// element.
|
|
//
|
|
// Invalidates all iterators at or after the removed element, including end().
|
|
iterator erase(const_iterator position) ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
|
|
// Removes the elements in the range [first, last).
|
|
//
|
|
// Returns an iterator to the element immediately following the removed range.
|
|
//
|
|
// Invalidates all iterators at or after the removed range, including end().
|
|
iterator erase(const_iterator first,
|
|
const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND;
|
|
|
|
// Gets the Arena on which this RepeatedField stores its elements.
|
|
// Note: this can be inaccurate for split default fields so we make this
|
|
// function non-const.
|
|
inline Arena* GetArena() { return GetArena(is_soo()); }
|
|
|
|
// For internal use only.
|
|
//
|
|
// This is public due to it being called by generated code.
|
|
inline void InternalSwap(RepeatedField* other);
|
|
|
|
static constexpr size_t InternalGetArenaOffset(internal::InternalVisibility) {
|
|
return PROTOBUF_FIELD_OFFSET(RepeatedField, soo_rep_) +
|
|
PROTOBUF_FIELD_OFFSET(internal::ShortSooRep, arena_and_size);
|
|
}
|
|
|
|
private:
|
|
using InternalArenaConstructable_ = void;
|
|
// We use std::max in order to share template instantiations between
|
|
// different element types.
|
|
using HeapRep = internal::HeapRep<std::max<size_t>(sizeof(Element), 8)>;
|
|
|
|
template <typename T>
|
|
friend class Arena::InternalHelper;
|
|
|
|
friend class Arena;
|
|
|
|
static constexpr int kSooCapacityElements =
|
|
internal::SooCapacityElements(sizeof(Element));
|
|
|
|
static constexpr int kInitialSize = 0;
|
|
static PROTOBUF_CONSTEXPR const size_t kHeapRepHeaderSize = sizeof(HeapRep);
|
|
|
|
RepeatedField(Arena* arena, const RepeatedField& rhs);
|
|
RepeatedField(Arena* arena, RepeatedField&& rhs);
|
|
|
|
inline Arena* GetArena(bool is_soo) const {
|
|
return is_soo ? soo_rep_.soo_arena() : heap_rep()->arena;
|
|
}
|
|
|
|
bool is_soo() const { return soo_rep_.is_soo(); }
|
|
int size(bool is_soo) const { return soo_rep_.size(is_soo); }
|
|
int Capacity(bool is_soo) const {
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
|
|
#endif
|
|
return is_soo ? kSooCapacityElements : soo_rep_.long_rep.capacity;
|
|
#if !defined(__clang__) && defined(__GNUC__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
void set_size(bool is_soo, int size) {
|
|
ABSL_DCHECK_LE(size, Capacity(is_soo));
|
|
soo_rep_.set_size(is_soo, size);
|
|
}
|
|
|
|
// Swaps entire contents with "other". Should be called only if the caller can
|
|
// guarantee that both repeated fields are on the same arena or are on the
|
|
// heap. Swapping between different arenas is disallowed and caught by a
|
|
// ABSL_DCHECK (see API docs for details).
|
|
void UnsafeArenaSwap(RepeatedField* other);
|
|
|
|
// Copy constructs `n` instances in place into the array `dst`.
|
|
// This function is identical to `std::uninitialized_copy_n(src, n, dst)`
|
|
// except that we explicit declare the memory to not be aliased, which will
|
|
// result in `memcpy` code generation instead of `memmove` for trivial types.
|
|
static inline void UninitializedCopyN(const Element* PROTOBUF_RESTRICT src,
|
|
int n, Element* PROTOBUF_RESTRICT dst) {
|
|
std::uninitialized_copy_n(src, n, dst);
|
|
}
|
|
|
|
// Copy constructs `[begin, end)` instances in place into the array `dst`.
|
|
// See above `UninitializedCopyN()` function comments for more information.
|
|
template <typename Iter>
|
|
static inline void UninitializedCopy(Iter begin, Iter end,
|
|
Element* PROTOBUF_RESTRICT dst) {
|
|
std::uninitialized_copy(begin, end, dst);
|
|
}
|
|
|
|
// Destroys all elements in [begin, end).
|
|
// This function does nothing if `Element` is trivial.
|
|
static void Destroy(const Element* begin, const Element* end) {
|
|
if (!std::is_trivial<Element>::value) {
|
|
std::for_each(begin, end, [&](const Element& e) { e.~Element(); });
|
|
}
|
|
}
|
|
|
|
template <typename Iter>
|
|
void AddForwardIterator(Iter begin, Iter end);
|
|
|
|
template <typename Iter>
|
|
void AddInputIterator(Iter begin, Iter end);
|
|
|
|
// Reserves space to expand the field to at least the given size.
|
|
// If the array is grown, it will always be at least doubled in size.
|
|
// If `annotate_size` is true (the default), then this function will annotate
|
|
// the old container from `old_size` to `Capacity()` (unpoison memory)
|
|
// directly before it is being released, and annotate the new container from
|
|
// `Capacity()` to `old_size` (poison unused memory).
|
|
void Grow(bool was_soo, int old_size, int new_size);
|
|
void GrowNoAnnotate(bool was_soo, int old_size, int new_size);
|
|
|
|
// Annotates a change in size of this instance. This function should be called
|
|
// with (capacity, old_size) after new memory has been allocated and filled
|
|
// from previous memory, and UnpoisonBuffer() should be called right before
|
|
// (previously annotated) memory is released.
|
|
void AnnotateSize(int old_size, int new_size) const {
|
|
if (old_size != new_size) {
|
|
ABSL_ATTRIBUTE_UNUSED const bool is_soo = this->is_soo();
|
|
ABSL_ATTRIBUTE_UNUSED const Element* elem = unsafe_elements(is_soo);
|
|
ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(elem, elem + Capacity(is_soo),
|
|
elem + old_size, elem + new_size);
|
|
if (new_size < old_size) {
|
|
ABSL_ANNOTATE_MEMORY_IS_UNINITIALIZED(
|
|
elem + new_size, (old_size - new_size) * sizeof(Element));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unpoisons the memory buffer.
|
|
void UnpoisonBuffer() const {
|
|
AnnotateSize(size(), Capacity());
|
|
if (is_soo()) {
|
|
// We need to manually unpoison the SOO buffer because in reflection for
|
|
// split repeated fields, we poison the whole SOO buffer even when we
|
|
// don't actually use the whole SOO buffer (e.g. for RepeatedField<bool>).
|
|
PROTOBUF_UNPOISON_MEMORY_REGION(soo_rep_.short_rep.data,
|
|
sizeof(soo_rep_.short_rep.data));
|
|
}
|
|
}
|
|
|
|
// Replaces size with new_size and returns the previous value of
|
|
// size. This function is intended to be the only place where
|
|
// size is modified, with the exception of `AddInputIterator()`
|
|
// where the size of added items is not known in advance.
|
|
inline int ExchangeCurrentSize(bool is_soo, int new_size) {
|
|
const int prev_size = size(is_soo);
|
|
AnnotateSize(prev_size, new_size);
|
|
set_size(is_soo, new_size);
|
|
return prev_size;
|
|
}
|
|
|
|
// Returns a pointer to elements array.
|
|
// pre-condition: Capacity() > 0.
|
|
Element* elements(bool is_soo) {
|
|
ABSL_DCHECK_GT(Capacity(is_soo), 0);
|
|
return unsafe_elements(is_soo);
|
|
}
|
|
const Element* elements(bool is_soo) const {
|
|
return const_cast<RepeatedField*>(this)->elements(is_soo);
|
|
}
|
|
|
|
// Returns a pointer to elements array if it exists; otherwise an invalid
|
|
// pointer is returned. This only happens for empty repeated fields, where you
|
|
// can't dereference this pointer anyway (it's empty).
|
|
Element* unsafe_elements(bool is_soo) {
|
|
return is_soo ? reinterpret_cast<Element*>(soo_rep_.short_rep.data)
|
|
: reinterpret_cast<Element*>(soo_rep_.long_rep.elements());
|
|
}
|
|
const Element* unsafe_elements(bool is_soo) const {
|
|
return const_cast<RepeatedField*>(this)->unsafe_elements(is_soo);
|
|
}
|
|
|
|
// Returns a pointer to the HeapRep struct.
|
|
// pre-condition: the HeapRep must have been allocated, ie !is_soo().
|
|
HeapRep* heap_rep() const {
|
|
ABSL_DCHECK(!is_soo());
|
|
return reinterpret_cast<HeapRep*>(soo_rep_.long_rep.elements() -
|
|
kHeapRepHeaderSize);
|
|
}
|
|
|
|
// Internal helper to delete all elements and deallocate the storage.
|
|
template <bool in_destructor = false>
|
|
void InternalDeallocate() {
|
|
ABSL_DCHECK(!is_soo());
|
|
const size_t bytes = Capacity(false) * sizeof(Element) + kHeapRepHeaderSize;
|
|
if (heap_rep()->arena == nullptr) {
|
|
internal::SizedDelete(heap_rep(), bytes);
|
|
} else if (!in_destructor) {
|
|
// If we are in the destructor, we might be being destroyed as part of
|
|
// the arena teardown. We can't try and return blocks to the arena then.
|
|
heap_rep()->arena->ReturnArrayMemory(heap_rep(), bytes);
|
|
}
|
|
}
|
|
|
|
// A note on the representation here (see also comment below for
|
|
// RepeatedPtrFieldBase's struct HeapRep):
|
|
//
|
|
// We maintain the same sizeof(RepeatedField) as before we added arena support
|
|
// so that we do not degrade performance by bloating memory usage. Directly
|
|
// adding an arena_ element to RepeatedField is quite costly. By using
|
|
// indirection in this way, we keep the same size when the RepeatedField is
|
|
// empty (common case), and add only an 8-byte header to the elements array
|
|
// when non-empty. We make sure to place the size fields directly in the
|
|
// RepeatedField class to avoid costly cache misses due to the indirection.
|
|
internal::SooRep soo_rep_{};
|
|
};
|
|
|
|
// implementation ====================================================
|
|
|
|
template <typename Element>
|
|
constexpr RepeatedField<Element>::RepeatedField() {
|
|
StaticValidityCheck();
|
|
#ifdef __cpp_lib_is_constant_evaluated
|
|
if (!std::is_constant_evaluated()) {
|
|
AnnotateSize(kSooCapacityElements, 0);
|
|
}
|
|
#endif // __cpp_lib_is_constant_evaluated
|
|
}
|
|
|
|
template <typename Element>
|
|
inline RepeatedField<Element>::RepeatedField(Arena* arena) : soo_rep_(arena) {
|
|
StaticValidityCheck();
|
|
AnnotateSize(kSooCapacityElements, 0);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline RepeatedField<Element>::RepeatedField(Arena* arena,
|
|
const RepeatedField& rhs)
|
|
: soo_rep_(arena) {
|
|
StaticValidityCheck();
|
|
AnnotateSize(kSooCapacityElements, 0);
|
|
const bool rhs_is_soo = rhs.is_soo();
|
|
if (auto size = rhs.size(rhs_is_soo)) {
|
|
bool is_soo = true;
|
|
if (size > kSooCapacityElements) {
|
|
Grow(is_soo, 0, size);
|
|
is_soo = false;
|
|
}
|
|
ExchangeCurrentSize(is_soo, size);
|
|
UninitializedCopyN(rhs.elements(rhs_is_soo), size, unsafe_elements(is_soo));
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
template <typename Iter, typename>
|
|
RepeatedField<Element>::RepeatedField(Iter begin, Iter end) {
|
|
StaticValidityCheck();
|
|
AnnotateSize(kSooCapacityElements, 0);
|
|
Add(begin, end);
|
|
}
|
|
|
|
template <typename Element>
|
|
RepeatedField<Element>::~RepeatedField() {
|
|
StaticValidityCheck();
|
|
const bool is_soo = this->is_soo();
|
|
#ifndef NDEBUG
|
|
// Try to trigger segfault / asan failure in non-opt builds if arena_
|
|
// lifetime has ended before the destructor.
|
|
auto arena = GetArena(is_soo);
|
|
if (arena) (void)arena->SpaceAllocated();
|
|
#endif
|
|
const int size = this->size(is_soo);
|
|
if (size > 0) {
|
|
Element* elem = unsafe_elements(is_soo);
|
|
Destroy(elem, elem + size);
|
|
}
|
|
UnpoisonBuffer();
|
|
if (!is_soo) InternalDeallocate<true>();
|
|
}
|
|
|
|
template <typename Element>
|
|
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
|
|
const RepeatedField& other) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
if (this != &other) CopyFrom(other);
|
|
return *this;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline RepeatedField<Element>::RepeatedField(Arena* arena, RepeatedField&& rhs)
|
|
: RepeatedField(arena) {
|
|
if (internal::CanMoveWithInternalSwap(arena, rhs.GetArena())) {
|
|
InternalSwap(&rhs);
|
|
} else {
|
|
// We don't just call Swap(&rhs) here because it would perform 3 copies if
|
|
// rhs is on a different arena.
|
|
CopyFrom(rhs);
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
|
|
RepeatedField&& other) noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
// We don't just call Swap(&other) here because it would perform 3 copies if
|
|
// the two fields are on different arenas.
|
|
if (this != &other) {
|
|
if (internal::CanMoveWithInternalSwap(GetArena(), other.GetArena())) {
|
|
InternalSwap(&other);
|
|
} else {
|
|
CopyFrom(other);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline bool RepeatedField<Element>::empty() const {
|
|
return size() == 0;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline int RepeatedField<Element>::size() const {
|
|
return size(is_soo());
|
|
}
|
|
|
|
template <typename Element>
|
|
inline int RepeatedField<Element>::Capacity() const {
|
|
return Capacity(is_soo());
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::AddAlreadyReserved(Element value) {
|
|
const bool is_soo = this->is_soo();
|
|
const int old_size = size(is_soo);
|
|
ABSL_DCHECK_LT(old_size, Capacity(is_soo));
|
|
void* p = elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + 1);
|
|
::new (p) Element(std::move(value));
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element* RepeatedField<Element>::AddAlreadyReserved()
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
const bool is_soo = this->is_soo();
|
|
const int old_size = size(is_soo);
|
|
ABSL_DCHECK_LT(old_size, Capacity(is_soo));
|
|
// new (p) <TrivialType> compiles into nothing: this is intentional as this
|
|
// function is documented to return uninitialized data for trivial types.
|
|
void* p = elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + 1);
|
|
return ::new (p) Element;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element* RepeatedField<Element>::AddNAlreadyReserved(int n)
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
const bool is_soo = this->is_soo();
|
|
const int old_size = size(is_soo);
|
|
ABSL_ATTRIBUTE_UNUSED const int capacity = Capacity(is_soo);
|
|
ABSL_DCHECK_GE(capacity - old_size, n) << capacity << ", " << old_size;
|
|
Element* p =
|
|
unsafe_elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + n);
|
|
for (Element *begin = p, *end = p + n; begin != end; ++begin) {
|
|
new (static_cast<void*>(begin)) Element;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
|
|
ABSL_DCHECK_GE(new_size, 0);
|
|
bool is_soo = this->is_soo();
|
|
const int old_size = size(is_soo);
|
|
if (new_size > old_size) {
|
|
if (new_size > Capacity(is_soo)) {
|
|
Grow(is_soo, old_size, new_size);
|
|
is_soo = false;
|
|
}
|
|
Element* elem = elements(is_soo);
|
|
Element* first = elem + ExchangeCurrentSize(is_soo, new_size);
|
|
std::uninitialized_fill(first, elem + new_size, value);
|
|
} else if (new_size < old_size) {
|
|
Element* elem = unsafe_elements(is_soo);
|
|
Destroy(elem + new_size, elem + old_size);
|
|
ExchangeCurrentSize(is_soo, new_size);
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
inline const Element& RepeatedField<Element>::Get(int index) const
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_DCHECK_GE(index, 0);
|
|
ABSL_DCHECK_LT(index, size());
|
|
return elements(is_soo())[index];
|
|
}
|
|
|
|
template <typename Element>
|
|
inline const Element& RepeatedField<Element>::at(int index) const
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_CHECK_GE(index, 0);
|
|
ABSL_CHECK_LT(index, size());
|
|
return elements(is_soo())[index];
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element& RepeatedField<Element>::at(int index)
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_CHECK_GE(index, 0);
|
|
ABSL_CHECK_LT(index, size());
|
|
return elements(is_soo())[index];
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element* RepeatedField<Element>::Mutable(int index)
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
ABSL_DCHECK_GE(index, 0);
|
|
ABSL_DCHECK_LT(index, size());
|
|
return &elements(is_soo())[index];
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::Set(int index, const Element& value) {
|
|
*Mutable(index) = value;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::Add(Element value) {
|
|
bool is_soo = this->is_soo();
|
|
const int old_size = size(is_soo);
|
|
int capacity = Capacity(is_soo);
|
|
Element* elem = unsafe_elements(is_soo);
|
|
if (ABSL_PREDICT_FALSE(old_size == capacity)) {
|
|
Grow(is_soo, old_size, old_size + 1);
|
|
is_soo = false;
|
|
capacity = Capacity(is_soo);
|
|
elem = unsafe_elements(is_soo);
|
|
}
|
|
int new_size = old_size + 1;
|
|
void* p = elem + ExchangeCurrentSize(is_soo, new_size);
|
|
::new (p) Element(std::move(value));
|
|
|
|
// The below helps the compiler optimize dense loops.
|
|
// Note: we can't call functions in PROTOBUF_ASSUME so use local variables.
|
|
ABSL_ATTRIBUTE_UNUSED const bool final_is_soo = this->is_soo();
|
|
PROTOBUF_ASSUME(is_soo == final_is_soo);
|
|
ABSL_ATTRIBUTE_UNUSED const int final_size = size(is_soo);
|
|
PROTOBUF_ASSUME(new_size == final_size);
|
|
ABSL_ATTRIBUTE_UNUSED Element* const final_elements = unsafe_elements(is_soo);
|
|
PROTOBUF_ASSUME(elem == final_elements);
|
|
ABSL_ATTRIBUTE_UNUSED const int final_capacity = Capacity(is_soo);
|
|
PROTOBUF_ASSUME(capacity == final_capacity);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element* RepeatedField<Element>::Add() ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
bool is_soo = this->is_soo();
|
|
const int old_size = size(is_soo);
|
|
if (ABSL_PREDICT_FALSE(old_size == Capacity())) {
|
|
Grow(is_soo, old_size, old_size + 1);
|
|
is_soo = false;
|
|
}
|
|
void* p = unsafe_elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + 1);
|
|
return ::new (p) Element;
|
|
}
|
|
|
|
template <typename Element>
|
|
template <typename Iter>
|
|
inline void RepeatedField<Element>::AddForwardIterator(Iter begin, Iter end) {
|
|
bool is_soo = this->is_soo();
|
|
const int old_size = size(is_soo);
|
|
int capacity = Capacity(is_soo);
|
|
Element* elem = unsafe_elements(is_soo);
|
|
int new_size = old_size + static_cast<int>(std::distance(begin, end));
|
|
if (ABSL_PREDICT_FALSE(new_size > capacity)) {
|
|
Grow(is_soo, old_size, new_size);
|
|
is_soo = false;
|
|
elem = unsafe_elements(is_soo);
|
|
capacity = Capacity(is_soo);
|
|
}
|
|
UninitializedCopy(begin, end, elem + ExchangeCurrentSize(is_soo, new_size));
|
|
|
|
// The below helps the compiler optimize dense loops.
|
|
// Note: we can't call functions in PROTOBUF_ASSUME so use local variables.
|
|
ABSL_ATTRIBUTE_UNUSED const bool final_is_soo = this->is_soo();
|
|
PROTOBUF_ASSUME(is_soo == final_is_soo);
|
|
ABSL_ATTRIBUTE_UNUSED const int final_size = size(is_soo);
|
|
PROTOBUF_ASSUME(new_size == final_size);
|
|
ABSL_ATTRIBUTE_UNUSED Element* const final_elements = unsafe_elements(is_soo);
|
|
PROTOBUF_ASSUME(elem == final_elements);
|
|
ABSL_ATTRIBUTE_UNUSED const int final_capacity = Capacity(is_soo);
|
|
PROTOBUF_ASSUME(capacity == final_capacity);
|
|
}
|
|
|
|
template <typename Element>
|
|
template <typename Iter>
|
|
inline void RepeatedField<Element>::AddInputIterator(Iter begin, Iter end) {
|
|
bool is_soo = this->is_soo();
|
|
int size = this->size(is_soo);
|
|
int capacity = Capacity(is_soo);
|
|
Element* elem = unsafe_elements(is_soo);
|
|
Element* first = elem + size;
|
|
Element* last = elem + capacity;
|
|
UnpoisonBuffer();
|
|
|
|
while (begin != end) {
|
|
if (ABSL_PREDICT_FALSE(first == last)) {
|
|
size = first - elem;
|
|
GrowNoAnnotate(is_soo, size, size + 1);
|
|
is_soo = false;
|
|
elem = unsafe_elements(is_soo);
|
|
capacity = Capacity(is_soo);
|
|
first = elem + size;
|
|
last = elem + capacity;
|
|
}
|
|
::new (static_cast<void*>(first)) Element(*begin);
|
|
++begin;
|
|
++first;
|
|
}
|
|
|
|
const int new_size = first - elem;
|
|
set_size(is_soo, new_size);
|
|
AnnotateSize(capacity, new_size);
|
|
}
|
|
|
|
template <typename Element>
|
|
template <typename Iter>
|
|
inline void RepeatedField<Element>::Add(Iter begin, Iter end) {
|
|
if (std::is_base_of<
|
|
std::forward_iterator_tag,
|
|
typename std::iterator_traits<Iter>::iterator_category>::value) {
|
|
AddForwardIterator(begin, end);
|
|
} else {
|
|
AddInputIterator(begin, end);
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::RemoveLast() {
|
|
const bool is_soo = this->is_soo();
|
|
const int old_size = size(is_soo);
|
|
ABSL_DCHECK_GT(old_size, 0);
|
|
elements(is_soo)[old_size - 1].~Element();
|
|
ExchangeCurrentSize(is_soo, old_size - 1);
|
|
}
|
|
|
|
template <typename Element>
|
|
void RepeatedField<Element>::ExtractSubrange(int start, int num,
|
|
Element* elements) {
|
|
ABSL_DCHECK_GE(start, 0);
|
|
ABSL_DCHECK_GE(num, 0);
|
|
const bool is_soo = this->is_soo();
|
|
const int old_size = size(is_soo);
|
|
ABSL_DCHECK_LE(start + num, old_size);
|
|
Element* elem = unsafe_elements(is_soo);
|
|
|
|
// Save the values of the removed elements if requested.
|
|
if (elements != nullptr) {
|
|
for (int i = 0; i < num; ++i) elements[i] = std::move(elem[i + start]);
|
|
}
|
|
|
|
// Slide remaining elements down to fill the gap.
|
|
if (num > 0) {
|
|
for (int i = start + num; i < old_size; ++i)
|
|
elem[i - num] = std::move(elem[i]);
|
|
Truncate(old_size - num);
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::Clear() {
|
|
const bool is_soo = this->is_soo();
|
|
Element* elem = unsafe_elements(is_soo);
|
|
Destroy(elem, elem + size(is_soo));
|
|
ExchangeCurrentSize(is_soo, 0);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
|
|
ABSL_DCHECK_NE(&other, this);
|
|
const bool other_is_soo = other.is_soo();
|
|
if (auto other_size = other.size(other_is_soo)) {
|
|
const int old_size = size();
|
|
Reserve(old_size + other_size);
|
|
const bool is_soo = this->is_soo();
|
|
Element* dst =
|
|
elements(is_soo) + ExchangeCurrentSize(is_soo, old_size + other_size);
|
|
UninitializedCopyN(other.elements(other_is_soo), other_size, dst);
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
|
|
if (&other == this) return;
|
|
Clear();
|
|
MergeFrom(other);
|
|
}
|
|
|
|
template <typename Element>
|
|
template <typename Iter>
|
|
inline void RepeatedField<Element>::Assign(Iter begin, Iter end) {
|
|
Clear();
|
|
Add(begin, end);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
|
|
const_iterator position) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return erase(position, position + 1);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
|
|
const_iterator first, const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
size_type first_offset = first - cbegin();
|
|
if (first != last) {
|
|
Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin());
|
|
}
|
|
return begin() + first_offset;
|
|
}
|
|
|
|
template <typename Element>
|
|
inline Element* RepeatedField<Element>::mutable_data()
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return unsafe_elements(is_soo());
|
|
}
|
|
|
|
template <typename Element>
|
|
inline const Element* RepeatedField<Element>::data() const
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return unsafe_elements(is_soo());
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::InternalSwap(
|
|
RepeatedField* PROTOBUF_RESTRICT other) {
|
|
ABSL_DCHECK(this != other);
|
|
|
|
// We need to unpoison during the swap in case we're in SOO mode.
|
|
UnpoisonBuffer();
|
|
other->UnpoisonBuffer();
|
|
|
|
internal::memswap<sizeof(internal::SooRep)>(
|
|
reinterpret_cast<char*>(&this->soo_rep_),
|
|
reinterpret_cast<char*>(&other->soo_rep_));
|
|
|
|
AnnotateSize(Capacity(), size());
|
|
other->AnnotateSize(other->Capacity(), other->size());
|
|
}
|
|
|
|
template <typename Element>
|
|
void RepeatedField<Element>::Swap(RepeatedField* other) {
|
|
if (this == other) return;
|
|
Arena* arena = GetArena();
|
|
Arena* other_arena = other->GetArena();
|
|
if (internal::CanUseInternalSwap(arena, other_arena)) {
|
|
InternalSwap(other);
|
|
} else {
|
|
RepeatedField<Element> temp(other_arena);
|
|
temp.MergeFrom(*this);
|
|
CopyFrom(*other);
|
|
other->UnsafeArenaSwap(&temp);
|
|
}
|
|
}
|
|
|
|
template <typename Element>
|
|
void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
|
|
if (this == other) return;
|
|
ABSL_DCHECK_EQ(GetArena(), other->GetArena());
|
|
InternalSwap(other);
|
|
}
|
|
|
|
template <typename Element>
|
|
void RepeatedField<Element>::SwapElements(int index1, int index2) {
|
|
Element* elem = elements(is_soo());
|
|
using std::swap; // enable ADL with fallback
|
|
swap(elem[index1], elem[index2]);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::begin()
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return iterator(unsafe_elements(is_soo()));
|
|
}
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::const_iterator
|
|
RepeatedField<Element>::begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return const_iterator(unsafe_elements(is_soo()));
|
|
}
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::const_iterator
|
|
RepeatedField<Element>::cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
return const_iterator(unsafe_elements(is_soo()));
|
|
}
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::end()
|
|
ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
const bool is_soo = this->is_soo();
|
|
return iterator(unsafe_elements(is_soo) + size(is_soo));
|
|
}
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::const_iterator
|
|
RepeatedField<Element>::end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
const bool is_soo = this->is_soo();
|
|
return const_iterator(unsafe_elements(is_soo) + size(is_soo));
|
|
}
|
|
template <typename Element>
|
|
inline typename RepeatedField<Element>::const_iterator
|
|
RepeatedField<Element>::cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
|
|
const bool is_soo = this->is_soo();
|
|
return const_iterator(unsafe_elements(is_soo) + size(is_soo));
|
|
}
|
|
|
|
template <typename Element>
|
|
inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
|
|
const int capacity = Capacity();
|
|
return capacity > kSooCapacityElements
|
|
? capacity * sizeof(Element) + kHeapRepHeaderSize
|
|
: 0;
|
|
}
|
|
|
|
namespace internal {
|
|
// Returns the new size for a reserved field based on its 'capacity' and the
|
|
// requested 'new_size'. The result is clamped to the closed interval:
|
|
// [internal::kMinRepeatedFieldAllocationSize,
|
|
// std::numeric_limits<int>::max()]
|
|
// Requires: new_size > capacity
|
|
template <typename T, int kHeapRepHeaderSize>
|
|
inline int CalculateReserveSize(int capacity, int new_size) {
|
|
constexpr int lower_limit =
|
|
RepeatedFieldLowerClampLimit<T, kHeapRepHeaderSize>();
|
|
if (new_size < lower_limit) {
|
|
// Clamp to smallest allowed size.
|
|
return lower_limit;
|
|
}
|
|
constexpr int kMaxSizeBeforeClamp =
|
|
(std::numeric_limits<int>::max() - kHeapRepHeaderSize) / 2;
|
|
if (PROTOBUF_PREDICT_FALSE(capacity > kMaxSizeBeforeClamp)) {
|
|
return std::numeric_limits<int>::max();
|
|
}
|
|
constexpr int kSooCapacityElements = SooCapacityElements(sizeof(T));
|
|
if (kSooCapacityElements > 0 && kSooCapacityElements < lower_limit) {
|
|
// In this case, we need to set capacity to 0 here to ensure power-of-two
|
|
// sized allocations.
|
|
if (capacity < lower_limit) capacity = 0;
|
|
} else {
|
|
ABSL_DCHECK(capacity == 0 || capacity >= lower_limit)
|
|
<< capacity << " " << lower_limit;
|
|
}
|
|
// We want to double the number of bytes, not the number of elements, to try
|
|
// to stay within power-of-two allocations.
|
|
// The allocation has kHeapRepHeaderSize + sizeof(T) * capacity.
|
|
int doubled_size = 2 * capacity + kHeapRepHeaderSize / sizeof(T);
|
|
return std::max(doubled_size, new_size);
|
|
}
|
|
} // namespace internal
|
|
|
|
template <typename Element>
|
|
void RepeatedField<Element>::Reserve(int new_size) {
|
|
const bool was_soo = is_soo();
|
|
if (ABSL_PREDICT_FALSE(new_size > Capacity(was_soo))) {
|
|
Grow(was_soo, size(was_soo), new_size);
|
|
}
|
|
}
|
|
|
|
// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
|
|
// amount of code bloat.
|
|
template <typename Element>
|
|
PROTOBUF_NOINLINE void RepeatedField<Element>::GrowNoAnnotate(bool was_soo,
|
|
int old_size,
|
|
int new_size) {
|
|
const int old_capacity = Capacity(was_soo);
|
|
ABSL_DCHECK_GT(new_size, old_capacity);
|
|
HeapRep* new_rep;
|
|
Arena* arena = GetArena();
|
|
|
|
new_size = internal::CalculateReserveSize<Element, kHeapRepHeaderSize>(
|
|
old_capacity, new_size);
|
|
|
|
ABSL_DCHECK_LE(static_cast<size_t>(new_size),
|
|
(std::numeric_limits<size_t>::max() - kHeapRepHeaderSize) /
|
|
sizeof(Element))
|
|
<< "Requested size is too large to fit into size_t.";
|
|
size_t bytes =
|
|
kHeapRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size);
|
|
if (arena == nullptr) {
|
|
ABSL_DCHECK_LE((bytes - kHeapRepHeaderSize) / sizeof(Element),
|
|
static_cast<size_t>(std::numeric_limits<int>::max()))
|
|
<< "Requested size is too large to fit element count into int.";
|
|
internal::SizedPtr res = internal::AllocateAtLeast(bytes);
|
|
size_t num_available =
|
|
std::min((res.n - kHeapRepHeaderSize) / sizeof(Element),
|
|
static_cast<size_t>(std::numeric_limits<int>::max()));
|
|
new_size = static_cast<int>(num_available);
|
|
new_rep = static_cast<HeapRep*>(res.p);
|
|
} else {
|
|
new_rep =
|
|
reinterpret_cast<HeapRep*>(Arena::CreateArray<char>(arena, bytes));
|
|
}
|
|
new_rep->arena = arena;
|
|
|
|
if (old_size > 0) {
|
|
Element* pnew = static_cast<Element*>(new_rep->elements());
|
|
Element* pold = elements(was_soo);
|
|
// TODO: add absl::is_trivially_relocatable<Element>
|
|
if (std::is_trivial<Element>::value) {
|
|
memcpy(static_cast<void*>(pnew), pold, old_size * sizeof(Element));
|
|
} else {
|
|
for (Element* end = pnew + old_size; pnew != end; ++pnew, ++pold) {
|
|
::new (static_cast<void*>(pnew)) Element(std::move(*pold));
|
|
pold->~Element();
|
|
}
|
|
}
|
|
}
|
|
if (!was_soo) InternalDeallocate();
|
|
|
|
soo_rep_.set_non_soo(was_soo, new_size, new_rep->elements());
|
|
}
|
|
|
|
// Ideally we would be able to use:
|
|
// template <bool annotate_size = true>
|
|
// void Grow();
|
|
// However, as explained in b/266411038#comment9, this causes issues
|
|
// in shared libraries for Youtube (and possibly elsewhere).
|
|
template <typename Element>
|
|
PROTOBUF_NOINLINE void RepeatedField<Element>::Grow(bool was_soo, int old_size,
|
|
int new_size) {
|
|
UnpoisonBuffer();
|
|
GrowNoAnnotate(was_soo, old_size, new_size);
|
|
AnnotateSize(Capacity(), old_size);
|
|
}
|
|
|
|
template <typename Element>
|
|
inline void RepeatedField<Element>::Truncate(int new_size) {
|
|
const bool is_soo = this->is_soo();
|
|
const int old_size = size(is_soo);
|
|
ABSL_DCHECK_LE(new_size, old_size);
|
|
if (new_size < old_size) {
|
|
Element* elem = unsafe_elements(is_soo);
|
|
Destroy(elem + new_size, elem + old_size);
|
|
ExchangeCurrentSize(is_soo, new_size);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
PROTOBUF_EXPORT size_t
|
|
RepeatedField<absl::Cord>::SpaceUsedExcludingSelfLong() const;
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
|
|
// Iterators and helper functions that follow the spirit of the STL
|
|
// std::back_insert_iterator and std::back_inserter but are tailor-made
|
|
// for RepeatedField and RepeatedPtrField. Typical usage would be:
|
|
//
|
|
// std::copy(some_sequence.begin(), some_sequence.end(),
|
|
// RepeatedFieldBackInserter(proto.mutable_sequence()));
|
|
//
|
|
// Ported by johannes from util/gtl/proto-array-iterators.h
|
|
|
|
namespace internal {
|
|
|
|
// STL-like iterator implementation for RepeatedField. You should not
|
|
// refer to this class directly; use RepeatedField<T>::iterator instead.
|
|
//
|
|
// Note: All of the iterator operators *must* be inlined to avoid performance
|
|
// regressions. This is caused by the extern template declarations below (which
|
|
// are required because of the RepeatedField extern template declarations). If
|
|
// any of these functions aren't explicitly inlined (e.g. defined in the class),
|
|
// the compiler isn't allowed to inline them.
|
|
template <typename Element>
|
|
class RepeatedIterator {
|
|
private:
|
|
using traits =
|
|
std::iterator_traits<typename std::remove_const<Element>::type*>;
|
|
|
|
public:
|
|
// Note: value_type is never cv-qualified.
|
|
using value_type = typename traits::value_type;
|
|
using difference_type = typename traits::difference_type;
|
|
using pointer = Element*;
|
|
using reference = Element&;
|
|
using iterator_category = typename traits::iterator_category;
|
|
using iterator_concept = typename IteratorConceptSupport<traits>::tag;
|
|
|
|
constexpr RepeatedIterator() noexcept : it_(nullptr) {}
|
|
|
|
// Allows "upcasting" from RepeatedIterator<T**> to
|
|
// RepeatedIterator<const T*const*>.
|
|
template <typename OtherElement,
|
|
typename std::enable_if<std::is_convertible<
|
|
OtherElement*, pointer>::value>::type* = nullptr>
|
|
constexpr RepeatedIterator(
|
|
const RepeatedIterator<OtherElement>& other) noexcept
|
|
: it_(other.it_) {}
|
|
|
|
// dereferenceable
|
|
constexpr reference operator*() const noexcept { return *it_; }
|
|
constexpr pointer operator->() const noexcept { return it_; }
|
|
|
|
private:
|
|
// Helper alias to hide the internal type.
|
|
using iterator = RepeatedIterator<Element>;
|
|
|
|
public:
|
|
// {inc,dec}rementable
|
|
iterator& operator++() noexcept {
|
|
++it_;
|
|
return *this;
|
|
}
|
|
iterator operator++(int) noexcept { return iterator(it_++); }
|
|
iterator& operator--() noexcept {
|
|
--it_;
|
|
return *this;
|
|
}
|
|
iterator operator--(int) noexcept { return iterator(it_--); }
|
|
|
|
// equality_comparable
|
|
friend constexpr bool operator==(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ == y.it_;
|
|
}
|
|
friend constexpr bool operator!=(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ != y.it_;
|
|
}
|
|
|
|
// less_than_comparable
|
|
friend constexpr bool operator<(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ < y.it_;
|
|
}
|
|
friend constexpr bool operator<=(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ <= y.it_;
|
|
}
|
|
friend constexpr bool operator>(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ > y.it_;
|
|
}
|
|
friend constexpr bool operator>=(const iterator& x,
|
|
const iterator& y) noexcept {
|
|
return x.it_ >= y.it_;
|
|
}
|
|
|
|
// addable, subtractable
|
|
iterator& operator+=(difference_type d) noexcept {
|
|
it_ += d;
|
|
return *this;
|
|
}
|
|
constexpr iterator operator+(difference_type d) const noexcept {
|
|
return iterator(it_ + d);
|
|
}
|
|
friend constexpr iterator operator+(const difference_type d,
|
|
iterator it) noexcept {
|
|
return it + d;
|
|
}
|
|
|
|
iterator& operator-=(difference_type d) noexcept {
|
|
it_ -= d;
|
|
return *this;
|
|
}
|
|
iterator constexpr operator-(difference_type d) const noexcept {
|
|
return iterator(it_ - d);
|
|
}
|
|
|
|
// indexable
|
|
constexpr reference operator[](difference_type d) const noexcept {
|
|
return it_[d];
|
|
}
|
|
|
|
// random access iterator
|
|
friend constexpr difference_type operator-(iterator it1,
|
|
iterator it2) noexcept {
|
|
return it1.it_ - it2.it_;
|
|
}
|
|
|
|
private:
|
|
template <typename OtherElement>
|
|
friend class RepeatedIterator;
|
|
|
|
// Allow construction from RepeatedField.
|
|
friend class RepeatedField<value_type>;
|
|
explicit RepeatedIterator(pointer it) noexcept : it_(it) {}
|
|
|
|
// The internal iterator.
|
|
pointer it_;
|
|
};
|
|
|
|
// A back inserter for RepeatedField objects.
|
|
template <typename T>
|
|
class RepeatedFieldBackInsertIterator {
|
|
public:
|
|
using iterator_category = std::output_iterator_tag;
|
|
using value_type = T;
|
|
using pointer = void;
|
|
using reference = void;
|
|
using difference_type = std::ptrdiff_t;
|
|
|
|
explicit RepeatedFieldBackInsertIterator(
|
|
RepeatedField<T>* const mutable_field)
|
|
: field_(mutable_field) {}
|
|
RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
|
|
field_->Add(value);
|
|
return *this;
|
|
}
|
|
RepeatedFieldBackInsertIterator<T>& operator*() { return *this; }
|
|
RepeatedFieldBackInsertIterator<T>& operator++() { return *this; }
|
|
RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
RepeatedField<T>* field_;
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// Provides a back insert iterator for RepeatedField instances,
|
|
// similar to std::back_inserter().
|
|
template <typename T>
|
|
internal::RepeatedFieldBackInsertIterator<T> RepeatedFieldBackInserter(
|
|
RepeatedField<T>* const mutable_field) {
|
|
return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
|
|
}
|
|
|
|
|
|
} // namespace protobuf
|
|
} // namespace google
|
|
|
|
#include "google/protobuf/port_undef.inc"
|
|
|
|
#endif // GOOGLE_PROTOBUF_REPEATED_FIELD_H__
|