DYT/Tool/OpenSceneGraph-3.6.5/include/geos/algorithm/MinimumAreaRectangle.h
2024-12-25 07:49:36 +08:00

160 lines
4.2 KiB
C++

/**********************************************************************
*
* GEOS - Geometry Engine Open Source
* http://geos.osgeo.org
*
* Copyright (C) 2023 Paul Ramsey <pramsey@cleverelephant.ca>
*
* This is free software; you can redistribute and/or modify it under
* the terms of the GNU Lesser General Public Licence as published
* by the Free Software Foundation.
* See the COPYING file for more information.
*
**********************************************************************/
#pragma once
#include <geos/export.h>
#include <vector>
#include <memory>
// Forward declarations
namespace geos {
namespace geom {
class CoordinateSequence;
class CoordinateXY;
class Geometry;
class GeometryFactory;
class LineSegment;
class LineString;
class Polygon;
}
}
using geos::geom::CoordinateSequence;
using geos::geom::CoordinateXY;
using geos::geom::Geometry;
using geos::geom::GeometryFactory;
using geos::geom::LineSegment;
using geos::geom::LineString;
using geos::geom::Polygon;
namespace geos {
namespace algorithm { // geos::algorithm
/**
* Computes the minimum-area rectangle enclosing a Geometry.
* Unlike the Envelope, the rectangle may not be axis-parallel.
*
* The first step in the algorithm is computing the convex hull of the Geometry.
* If the input Geometry is known to be convex, a hint can be supplied to
* avoid this computation.
*
* In degenerate cases the minimum enclosing geometry
* may be a LineString or a Point.
*
* The minimum-area enclosing rectangle does not necessarily
* have the minimum possible width.
* Use MinimumDiameter to compute this.
*
* @see MinimumDiameter
* @see ConvexHull
*
*/
class GEOS_DLL MinimumAreaRectangle {
private:
// Members
const Geometry* m_inputGeom;
bool m_isConvex;
// Methods
std::unique_ptr<Geometry> getMinimumRectangle();
std::unique_ptr<Geometry> computeConvex(const Geometry* convexGeom);
/**
* Computes the minimum-area rectangle for a convex ring of Coordinate.
*
* This algorithm uses the "dual rotating calipers" technique.
* Performance is linear in the number of segments.
*
* @param ring the convex ring to scan
*/
std::unique_ptr<Polygon> computeConvexRing(const CoordinateSequence* ring);
std::size_t findFurthestVertex(
const CoordinateSequence* pts,
const LineSegment& baseSeg,
std::size_t startIndex,
int orient);
bool isFurtherOrEqual(double d1, double d2, int orient);
static double orientedDistance(
const LineSegment& seg,
const CoordinateXY& p,
int orient);
static std::size_t getNextIndex(
const CoordinateSequence* ring,
std::size_t index);
/**
* Creates a line of maximum extent from the provided vertices
* @param pts the vertices
* @param factory the geometry factory
* @return the line of maximum extent
*/
static std::unique_ptr<LineString> computeMaximumLine(
const CoordinateSequence* pts,
const GeometryFactory* factory);
public:
/**
* Compute a minimum-area rectangle for a given Geometry.
*
* @param inputGeom a Geometry
*/
MinimumAreaRectangle(const Geometry* inputGeom)
: m_inputGeom(inputGeom)
, m_isConvex(false)
{};
/**
* Compute a minimum rectangle for a Geometry,
* with a hint if the geometry is convex
* (e.g. a convex Polygon or LinearRing,
* or a two-point LineString, or a Point).
*
* @param inputGeom a Geometry which is convex
* @param isConvex true if the input geometry is convex
*/
MinimumAreaRectangle(const Geometry* inputGeom, bool isConvex)
: m_inputGeom(inputGeom)
, m_isConvex(isConvex)
{};
/**
* Gets the minimum-area rectangular Polygon which encloses the input geometry.
* If the convex hull of the input is degenerate (a line or point)
* a LineString or Point is returned.
*
* @param geom the geometry
* @return the minimum rectangle enclosing the geometry
*/
static std::unique_ptr<Geometry> getMinimumRectangle(const Geometry* geom);
};
} // namespace geos::algorithm
} // namespace geos