DYT/Tool/matlab/include/nav/planningcodegen_ReedsSheppMetric.hpp
2024-11-22 23:19:31 +08:00

103 lines
3.6 KiB
C++

// Copyright 2019-2021 The MathWorks, Inc.
/**
* @file
* @brief Reeds-Shepp distance metric
*/
#ifndef PLANNINGCODEGEN_REEDSSHEPPMETRIC_HPP
#define PLANNINGCODEGEN_REEDSSHEPPMETRIC_HPP
#include "planningcodegen_DistanceMetric.hpp"
#ifdef IS_NOT_MATLAB_HOST
#include "autonomouscodegen_reeds_shepp_api.hpp"
#else
#include "autonomouscodegen_reeds_shepp_tbb_api.hpp"
#endif
namespace nav {
/// template class for Reeds-Shepp distance metric
/**
* @tparam T Data type
*
*/
template <typename T>
class ReedsSheppMetric : public DistanceMetric<T> {
public:
/**
* @brief Compute distance between two vehicle states using Reeds-Shepp path
* @param[in] state1 [x1, y1, theta1] as an std::vector
* @param[in] state2 [x2, y2, theta2] as an std::vector
* @return The distance between state1 and state2
*/
T distance(const std::vector<T>& state1, const std::vector<T>& state2) {
T result = static_cast<T>(0.0);
(void)state1;
(void)state2;
return result;
}
};
/// Specialization for double precision data type.
template <>
class ReedsSheppMetric<real64_T> : public DistanceMetric<real64_T> {
public:
ReedsSheppMetric(real64_T turningRadius, real64_T reverseCost, boolean_T isReversed = false) {
this->m_dim = 3;
this->m_reverseDirection = isReversed;
m_minTurningRadius = turningRadius;
m_reverseCost = reverseCost;
}
/// Reeds-Shepp distance between two states
// When invoked by a sampling-based planner during NN search:
// A) if m_reverseDirection is false, the distance function computes RS distances from
// treeStates (N) to queryStates (1)
// B) if m_reverseDirection is true, the distance function computes RS distances from
// queryStates (1) to treeStates (N)
std::vector<real64_T> distance(const std::vector<real64_T>& treeStates,
const std::vector<real64_T>& queryStates) override{
const std::vector<real64_T>& states1 = this->m_reverseDirection ? queryStates : treeStates;
const std::vector<real64_T>& states2 = this->m_reverseDirection ? treeStates : queryStates;
// reorder just to be reordered again (convert from row-major order to column-major order)
// See enhancement g2415010.
std::vector<real64_T> states1Reordered = rowMajorToColumnMajor(states1, this->m_dim);
std::vector<real64_T> states2Reordered = rowMajorToColumnMajor(states2, this->m_dim);
std::size_t numStates1 = states1.size() / this->m_dim;
std::size_t numStates2 = states2.size() / this->m_dim;
std::vector<real64_T> dists(numStates1 * numStates2, 0.0);
// unfortunately, this method below is designed to work with mxArray from MATLAB ONLY, which assumes
// column-major matrices We have to reorder "states" before we send in the data, which requires an
// copying overhead. better way is to update the TBB functor to provide a row-major API.
#ifdef IS_NOT_MATLAB_HOST
autonomousReedsSheppDistanceCodegen_real64(
states1Reordered.data(), static_cast<uint32_T>(numStates1), states2Reordered.data(),
static_cast<uint32_T>(numStates2), m_minTurningRadius, m_reverseCost, dists.data());
#else
autonomousReedsSheppDistanceCodegen_tbb_real64(
states1Reordered.data(), static_cast<uint32_T>(numStates1), states2Reordered.data(),
static_cast<uint32_T>(numStates2), m_minTurningRadius, m_reverseCost, dists.data());
#endif
return dists;
}
protected:
/// minimum turning radius
real64_T m_minTurningRadius;
/// reverse cost
real64_T m_reverseCost;
};
} // namespace nav
#endif