DYT/Tool/OpenSceneGraph-3.6.5/include/geos/algorithm/ConvexHull.h
2024-12-25 07:49:36 +08:00

212 lines
6.4 KiB
C++

/**********************************************************************
*
* GEOS - Geometry Engine Open Source
* http://geos.osgeo.org
*
* Copyright (C) 2011 Sandro Santilli <strk@kbt.io>
* Copyright (C) 2005-2006 Refractions Research Inc.
* Copyright (C) 2001-2002 Vivid Solutions Inc.
*
* This is free software; you can redistribute and/or modify it under
* the terms of the GNU Lesser General Public Licence as published
* by the Free Software Foundation.
* See the COPYING file for more information.
*
**********************************************************************
*
* Last port: algorithm/ConvexHull.java r407 (JTS-1.12+)
*
**********************************************************************/
#pragma once
#include <geos/export.h>
#include <memory>
#include <vector>
#include <cassert>
// FIXME: avoid using Coordinate:: typedefs to avoid full include
#include <geos/algorithm/ConvexHull.h>
#include <geos/geom/Coordinate.h>
#include <geos/geom/CoordinateSequence.h>
#include <geos/geom/Geometry.h>
#include <geos/util/UniqueCoordinateArrayFilter.h>
#include <geos/util/CoordinateArrayFilter.h>
#include "geos/util.h"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4251) // warning C4251: needs to have dll-interface to be used by clients of class
#endif
// Forward declarations
namespace geos {
namespace geom {
class GeometryFactory;
}
}
namespace geos {
namespace algorithm { // geos::algorithm
/** \brief
* Computes the convex hull of a Geometry.
*
* The convex hull is the smallest convex Geometry that contains all the
* points in the input Geometry.
*
* Uses the Graham Scan algorithm.
*
* Last port: algorithm/ConvexHull.java rev. 1.26 (JTS-1.7)
*
*/
class GEOS_DLL ConvexHull {
private:
static constexpr std::size_t TUNING_REDUCE_SIZE = 50;
const geom::Geometry* inputGeom;
const geom::GeometryFactory* geomFactory;
geom::Coordinate::ConstVect inputPts;
/// Create a CoordinateSequence from the Coordinate::ConstVect
/// This is needed to construct the geometries.
/// Here coordinate copies happen
/// The returned object is newly allocated !NO EXCEPTION SAFE!
std::unique_ptr<geom::CoordinateSequence> toCoordinateSequence(geom::Coordinate::ConstVect& cv);
void computeInnerOctolateralPts(
const geom::Coordinate::ConstVect& src,
geom::Coordinate::ConstVect& tgt);
bool computeInnerOctolateralRing(
const geom::Coordinate::ConstVect& src,
geom::Coordinate::ConstVect& tgt);
/**
* Uses a heuristic to reduce the number of points scanned
* to compute the hull.
* The heuristic is to find a polygon guaranteed to
* be in (or on) the hull, and eliminate all points inside it.
* A quadrilateral defined by the extremal points
* in the four orthogonal directions
* can be used, but even more inclusive is
* to use an octilateral defined by the points in the
* 8 cardinal directions.
*
* Note that even if the method used to determine the polygon
* vertices is not 100% robust, this does not affect the
* robustness of the convex hull.
*
* To satisfy the requirements of the Graham Scan algorithm,
* the resulting array has at least 3 entries.
*
* @param pts The vector of const Coordinate pointers
* to be reduced (to at least 3 elements)
*
* WARNING: the parameter will be modified
*
*/
void reduce(geom::Coordinate::ConstVect& pts);
/// parameter will be modified
void padArray3(geom::Coordinate::ConstVect& pts);
/// parameter will be modified
void preSort(geom::Coordinate::ConstVect& pts);
/**
* Given two points p and q compare them with respect to their radial
* ordering about point o. First checks radial ordering.
* If points are collinear, the comparison is based
* on their distance to the origin.
*
* p < q iff
*
* - ang(o-p) < ang(o-q) (e.g. o-p-q is CCW)
* - or ang(o-p) == ang(o-q) && dist(o,p) < dist(o,q)
*
* @param o the origin
* @param p a point
* @param q another point
* @return -1, 0 or 1 depending on whether p is less than,
* equal to or greater than q
*/
int polarCompare(const geom::Coordinate& o,
const geom::Coordinate& p,
const geom::Coordinate& q);
void grahamScan(const geom::Coordinate::ConstVect& c,
geom::Coordinate::ConstVect& ps);
/**
* @param vertices the vertices of a linear ring,
* which may or may not be
* flattened (i.e. vertices collinear)
*
* @return a 2-vertex LineString if the vertices are
* collinear; otherwise, a Polygon with unnecessary
* (collinear) vertices removed
*/
std::unique_ptr<geom::Geometry> lineOrPolygon(const geom::Coordinate::ConstVect& vertices);
/**
* Write in 'cleaned' a version of 'input' with collinear
* vertices removed.
*/
void cleanRing(const geom::Coordinate::ConstVect& input,
geom::Coordinate::ConstVect& cleaned);
/**
* @return whether the three coordinates are collinear
* and c2 lies between c1 and c3 inclusive
*/
bool isBetween(
const geom::Coordinate& c1,
const geom::Coordinate& c2,
const geom::Coordinate& c3);
bool extractUnique(geom::Coordinate::ConstVect& pts, std::size_t maxPts);
std::unique_ptr<geom::Geometry> createFewPointsResult();
public:
/**
* Create a new convex hull construction for the input Geometry.
*/
ConvexHull(const geom::Geometry* newGeometry)
: inputGeom(newGeometry)
, geomFactory(newGeometry->getFactory())
{
util::ensureNoCurvedComponents(inputGeom);
};
~ConvexHull() {};
/**
* Returns a Geometry that represents the convex hull of
* the input geometry.
* The returned geometry contains the minimal number of points
* needed to represent the convex hull.
* In particular, no more than two consecutive points
* will be collinear.
*
* @return if the convex hull contains 3 or more points,
* a Polygon; 2 points, a LineString;
* 1 point, a Point; 0 points, an empty GeometryCollection.
*/
std::unique_ptr<geom::Geometry> getConvexHull();
};
} // namespace geos::algorithm
} // namespace geos
#ifdef _MSC_VER
#pragma warning(pop)
#endif