DYT/Tool/matlab/include/MatlabDataArray/SparseArray.hpp
2024-11-22 23:19:31 +08:00

373 lines
17 KiB
C++

/* Copyright 2016-2018 The MathWorks, Inc. */
#ifndef SPARSE_ARRAY_HPP_
#define SPARSE_ARRAY_HPP_
#include "matlab_data_array_defs.hpp"
#include "matlab_extdata_defs.hpp"
#include "MDArray.hpp"
#include "Exception.hpp"
#include "detail/publish_util.hpp"
#include "detail/FunctionType.hpp"
#include "detail/HelperFunctions.hpp"
#include <stdint.h>
#include <memory>
#include <utility>
#if defined (_MSC_VER) && (_MSC_VER < 1900)
#include "SparseArray_VS2013.hpp"
#else
namespace matlab {
namespace data {
namespace impl {
class ArrayImpl;
}
namespace detail {
class IteratorImpl;
class Access;
}
typedef std::pair<size_t, size_t> SparseIndex;
/**
* SparseArray class provides an API for accessing sparse TypedArray data.
* It contains functionality to access only the non-zero elements
* of the array.
*/
template<typename T>
class SparseArray : public Array {
public:
using iterator = TypedIterator<T>;
using const_iterator = TypedIterator<typename std::add_const<T>::type>;
static const ArrayType type = GetSparseArrayType<T>::type;
/**
* Copy constructor
* @param rhs SparseArray to be copied to the current one
* @throw none
*/
SparseArray(const SparseArray<T> &rhs) MW_NOEXCEPT
: Array(rhs)
{}
/**
* Operator=
* @param rhs SparseArray to be assigned to the current one
* @throw none
*/
SparseArray& operator=(const SparseArray<T> &rhs) MW_NOEXCEPT {
Array::operator=(rhs);
return *this;
}
/**
* Move constructor
* @param rhs SparseArray to be "moved" into the current one
* @throw none
*/
SparseArray(SparseArray&& rhs) MW_NOEXCEPT
: Array(std::move(rhs)) {}
/**
* Move operator==
* @param rhs SparseArray to be "move-assigned" into the current one
* @throw none
*/
SparseArray& operator=(SparseArray<T>&& rhs) MW_NOEXCEPT {
Array::operator=(std::move(rhs));
return *this;
}
/**
* Copy construct a SparseArray from an Array
* @param rhs Array to copy to the new Sparse array
* @throw InvalidArrayTypeException if type of rhs type is not sparse
*
*/
SparseArray(const Array& rhs) : Array(rhs) {
typedef int(*TypedArrayIsValidConversionFcnPtr)(int, int, bool*);
static const TypedArrayIsValidConversionFcnPtr fcn = detail::resolveFunction<TypedArrayIsValidConversionFcnPtr>
(detail::FunctionType::TYPED_ARRAY_IS_VALID_CONVERSION);
bool result;
detail::throwIfError(fcn(static_cast<int>(type), static_cast<int>(rhs.getType()), &result));
if (!result) {
throw InvalidArrayTypeException("Can't convert the Array to this SparseArray");
}
}
/**
* Copy Operator=
* @param rhs Array to be assigned to the current one
* @throw InvalidArrayTypeException if type of rhs doesn't match
*/
SparseArray& operator=(const Array& rhs) {
typedef int(*TypedArrayIsValidConversionFcnPtr)(int, int, bool*);
static const TypedArrayIsValidConversionFcnPtr fcn = detail::resolveFunction<TypedArrayIsValidConversionFcnPtr>
(detail::FunctionType::TYPED_ARRAY_IS_VALID_CONVERSION);
bool result;
detail::throwIfError(fcn(static_cast<int>(type), static_cast<int>(rhs.getType()), &result));
if (!result) {
throw InvalidArrayTypeException("Can't convert the Array to this SparseArray");
}
Array::operator=(rhs);
return *this;
}
/**
* Move construct a SparseArray from an Array
* @param rhs Array to be moved to the new Sparse array
* @throw InvalidArrayTypeException if type of rhs is not sparse
*/
SparseArray(Array&& rhs)
: Array(std::move(rhs)) {
typedef int(*TypedArrayIsValidConversionFcnPtr)(int, int, bool*);
static const TypedArrayIsValidConversionFcnPtr fcn = detail::resolveFunction<TypedArrayIsValidConversionFcnPtr>
(detail::FunctionType::TYPED_ARRAY_IS_VALID_CONVERSION);
bool result;
detail::throwIfError(fcn(static_cast<int>(type), static_cast<int>(getType()), &result));
if (!result) {
rhs = std::move(*this);
throw InvalidArrayTypeException("Can't convert the Array to this SparseArray");
}
}
/**
* Move Operator=
* @param rhs Array to be move-assigned to the current one
* @throw InvalidArrayTypeException if type of rhs doesn't match or is not recognized
*/
SparseArray& operator=(Array&& rhs) {
typedef int(*TypedArrayIsValidConversionFcnPtr)(int, int, bool*);
static const TypedArrayIsValidConversionFcnPtr fcn = detail::resolveFunction<TypedArrayIsValidConversionFcnPtr>
(detail::FunctionType::TYPED_ARRAY_IS_VALID_CONVERSION);
bool result;
detail::throwIfError(fcn(static_cast<int>(type), static_cast<int>(rhs.getType()), &result));
if (!result) {
throw InvalidArrayTypeException("Can't convert the Array to this SparseArray");
}
Array::operator=(std::move(rhs));
return *this;
}
/**
* Return an iterator to the beginning of the array
*
* @return iterator
* @throw none
*/
iterator begin() MW_NOEXCEPT {
impl::ArrayImpl* newImpl = nullptr;
typedef bool(*ArrayUnshareFcnPtr)(impl::ArrayImpl*, bool, impl::ArrayImpl**);
static const ArrayUnshareFcnPtr u_fcn = detail::resolveFunction<ArrayUnshareFcnPtr>
(detail::FunctionType::ARRAY_UNSHARE);
if (u_fcn(pImpl.get(), (pImpl.use_count() == 1), &newImpl)) {
pImpl.reset(newImpl, [](impl::ArrayImpl* ptr) {
typedef void(*ArrayDestroyFcnPtr)(impl::ArrayImpl*);
static const ArrayDestroyFcnPtr d_fcn = detail::resolveFunction<ArrayDestroyFcnPtr>
(detail::FunctionType::ARRAY_DESTROY);
d_fcn(ptr);
});
}
typedef detail::IteratorImpl*(*TypedArrayBeginFcnPtr)(impl::ArrayImpl*, bool);
static const TypedArrayBeginFcnPtr fcn3 = detail::resolveFunctionNoExcept<TypedArrayBeginFcnPtr>
(detail::FunctionType::TYPED_ARRAY_BEGIN_V2);
if (fcn3 == nullptr) {
static const TypedArrayBeginFcnPtr fcn4 = detail::resolveFunction<TypedArrayBeginFcnPtr>
(detail::FunctionType::TYPED_ARRAY_BEGIN);
return detail::Access::createObj<iterator>(fcn4(pImpl.get(), !std::is_const<T>::value));
}
return detail::Access::createObj<iterator>(fcn3(pImpl.get(), !std::is_const<T>::value));
}
/**
* Return an const_iterator to the beginning of the array
*
* @return const_iterator
* @throw none
*/
const_iterator begin() const MW_NOEXCEPT {
return cbegin();
}
/**
* Return an const_iterator to the beginning of the array
*
* @return const_iterator
* @throw none
*/
const_iterator cbegin() const MW_NOEXCEPT {
typedef detail::IteratorImpl*(*TypedArrayBeginFcnPtr)(impl::ArrayImpl*, bool);
static const TypedArrayBeginFcnPtr fcn3 = detail::resolveFunctionNoExcept<TypedArrayBeginFcnPtr>
(detail::FunctionType::TYPED_ARRAY_BEGIN_V2);
if (fcn3 == nullptr) {
static const TypedArrayBeginFcnPtr fcn4 = detail::resolveFunction<TypedArrayBeginFcnPtr>
(detail::FunctionType::TYPED_ARRAY_BEGIN);
return detail::Access::createObj<const_iterator>(fcn4(pImpl.get(), false));
}
return detail::Access::createObj<const_iterator>(fcn3(pImpl.get(), false));
}
/**
* Return an iterator to the end of the array
*
* @return iterator
* @throw none
*/
iterator end() MW_NOEXCEPT {
impl::ArrayImpl* newImpl = nullptr;
typedef bool(*ArrayUnshareFcnPtr)(impl::ArrayImpl*, bool, impl::ArrayImpl**);
static const ArrayUnshareFcnPtr u_fcn = detail::resolveFunction<ArrayUnshareFcnPtr>
(detail::FunctionType::ARRAY_UNSHARE);
if (u_fcn(pImpl.get(), (pImpl.use_count() == 1), &newImpl)) {
pImpl.reset(newImpl, [](impl::ArrayImpl* ptr) {
typedef void(*ArrayDestroyFcnPtr)(impl::ArrayImpl*);
static const ArrayDestroyFcnPtr d_fcn = detail::resolveFunction<ArrayDestroyFcnPtr>
(detail::FunctionType::ARRAY_DESTROY);
d_fcn(ptr);
});
}
typedef detail::IteratorImpl*(*TypedArrayEndFcnPtr)(impl::ArrayImpl*, bool);
static const TypedArrayEndFcnPtr fcn = detail::resolveFunctionNoExcept<TypedArrayEndFcnPtr>
(detail::FunctionType::TYPED_ARRAY_END_V2);
if (fcn == nullptr) {
static const TypedArrayEndFcnPtr fcn2 = detail::resolveFunction<TypedArrayEndFcnPtr>
(detail::FunctionType::TYPED_ARRAY_END);
return detail::Access::createObj<iterator>(fcn2(pImpl.get(), !std::is_const<T>::value));
}
return detail::Access::createObj<iterator>(fcn(pImpl.get(), !std::is_const<T>::value));
}
/**
* Return an const_iterator to the end of the array
*
* @return const_iterator
* @throw none
*/
const_iterator end() const MW_NOEXCEPT {
return cend();
}
/**
* Return an const_iterator to the end of the array
*
* @return const_iterator
* @throw none
*/
const_iterator cend() const MW_NOEXCEPT {
typedef detail::IteratorImpl*(*TypedArrayEndFcnPtr)(impl::ArrayImpl*, bool);
static const TypedArrayEndFcnPtr fcn = detail::resolveFunctionNoExcept<TypedArrayEndFcnPtr>
(detail::FunctionType::TYPED_ARRAY_END_V2);
if (fcn == nullptr) {
static const TypedArrayEndFcnPtr fcn2 = detail::resolveFunction<TypedArrayEndFcnPtr>
(detail::FunctionType::TYPED_ARRAY_END);
return detail::Access::createObj<const_iterator>(fcn2(pImpl.get(), false));
}
return detail::Access::createObj<const_iterator>(fcn(pImpl.get(), false));
}
/**
* This API returns the number of non-zero elements in the array.
* Since sparse arrays only store non-zero elements, this API effectively
* returns the actual array size. It is different from array dimensions
* that specify the full array size.
* @return Number of non-zero elements in the array
* @throw none
*/
size_t getNumberOfNonZeroElements() const MW_NOEXCEPT {
size_t val;
typedef void(*SparseArrayGetNumNonZeroElementsFcnPtr)(impl::ArrayImpl*, size_t*);
static const SparseArrayGetNumNonZeroElementsFcnPtr fcn = detail::resolveFunction<SparseArrayGetNumNonZeroElementsFcnPtr>
(detail::FunctionType::SPARSE_ARRAY_GET_NUM_NONZERO_ELEMENTS);
fcn(detail::Access::getImpl<impl::ArrayImpl>(*this), &val);
return val;
}
/**
* This API returns the row-column coordinates of the non-zero entry that the iterator is pointing to.
*
* @param it - Iterator pointing to the current entry in the Sparse matrix
* @return - {m,n} of the entry
* @throw FeatureNotSupportedException if running against a MATLAB version prior to R2018b
*/
template <typename U = T>
typename std::enable_if<std::is_arithmetic<U>::value || is_complex<U>::value, SparseIndex>::type getIndex(const TypedIterator<T>& it) {
size_t row, col;
auto b = begin();
typedef void(*SparseArrayGetIndexArithmeticFcnPtr)(impl::ArrayImpl*, size_t, size_t*, size_t*);
static const SparseArrayGetIndexArithmeticFcnPtr fcn = detail::resolveFunction<SparseArrayGetIndexArithmeticFcnPtr>
(detail::FunctionType::SPARSE_ARRAY_GET_INDEX_ARITHMETIC);
fcn(detail::Access::getImpl<impl::ArrayImpl>(*this),
(it - b),
&row,
&col);
return SparseIndex(row, col);
}
template <typename U = T>
typename std::enable_if<!std::is_arithmetic<U>::value && !is_complex<U>::value, SparseIndex>::type getIndex(const TypedIterator<T>& it) MW_NOEXCEPT {
size_t row, col;
typedef void(*SparseArrayGetIndexFcnPtr)(impl::ArrayImpl*, detail::IteratorImpl*, size_t*, size_t*);
static const SparseArrayGetIndexFcnPtr fcn = detail::resolveFunction<SparseArrayGetIndexFcnPtr>
(detail::FunctionType::SPARSE_ARRAY_GET_INDEX);
fcn(detail::Access::getImpl<impl::ArrayImpl>(*this),
detail::Access::getImpl<detail::IteratorImpl>(it),
&row,
&col);
return SparseIndex(row, col);
}
/**
* This API returns the row-column coordinates of the non-zero entry that the iterator is pointing to.
*
* @param it - Iterator pointing to the current entry in the Sparse matrix
* @return - {m,n} of the entry
* @throw FeatureNotSupportedException if running against a MATLAB version prior to R2018b
*/
template <typename U = T>
typename std::enable_if<std::is_arithmetic<U>::value || is_complex<U>::value, SparseIndex>::type getIndex(const TypedIterator<T const>& it) const {
size_t row, col;
auto b = cbegin();
typedef void(*SparseArrayGetIndexArithmeticFcnPtr)(impl::ArrayImpl*, size_t, size_t*, size_t*);
static const SparseArrayGetIndexArithmeticFcnPtr fcn = detail::resolveFunction<SparseArrayGetIndexArithmeticFcnPtr>
(detail::FunctionType::SPARSE_ARRAY_GET_INDEX_ARITHMETIC);
fcn(detail::Access::getImpl<impl::ArrayImpl>(*this),
(it - b),
&row,
&col);
return SparseIndex(row, col);
}
template <typename U = T>
typename std::enable_if<!std::is_arithmetic<U>::value && !is_complex<U>::value, SparseIndex>::type getIndex(const TypedIterator<T const>& it) const MW_NOEXCEPT {
size_t row, col;
typedef void(*SparseArrayGetIndexFcnPtr)(impl::ArrayImpl*, detail::IteratorImpl*, size_t*, size_t*);
static const SparseArrayGetIndexFcnPtr fcn = detail::resolveFunction<SparseArrayGetIndexFcnPtr>
(detail::FunctionType::SPARSE_ARRAY_GET_INDEX);
fcn(detail::Access::getImpl<impl::ArrayImpl>(*this),
detail::Access::getImpl<detail::IteratorImpl>(it),
&row,
&col);
return SparseIndex(row, col);
}
private:
friend class detail::Access;
SparseArray(impl::ArrayImpl *impl) MW_NOEXCEPT :
Array(impl) {}
SparseArray() = delete;
};
}
}
#endif
#endif