DYT/Tool/OpenSceneGraph-3.6.5/include/osgEarth/AGG.h
2024-12-25 07:49:36 +08:00

2130 lines
67 KiB
C++

//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.1 Lite
// Copyright (C) 2002-2003 Maxim Shemanarev (McSeem)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// The author gratefully acknowledges the support of David Turner,
// Robert Wilhelm, and Werner Lemberg - the authors of the FreeType
// libray - in producing this work. See http://www.freetype.org for details.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGGLITE_H
#define AGGLITE_H
#include <memory.h>
namespace agg
{
//------------------------------------------------------------------------
typedef signed char int8;
typedef unsigned char int8u;
typedef signed short int16;
typedef unsigned short int16u;
typedef signed int int32;
typedef unsigned int int32u;
//========================================================================
struct rgba8
{
enum order { rgb, bgr };
int8u r;
int8u g;
int8u b;
int8u a;
//--------------------------------------------------------------------
rgba8() : r(0), g(0), b(0), a(0) {}
//--------------------------------------------------------------------
rgba8(unsigned r_, unsigned g_, unsigned b_, unsigned a_=255) :
r(int8u(r_)), g(int8u(g_)), b(int8u(b_)), a(int8u(a_)) {}
//--------------------------------------------------------------------
rgba8(unsigned packed, order o) :
r((o == rgb) ? ((packed >> 16) & 0xFF) : (packed & 0xFF)),
g((packed >> 8) & 0xFF),
b((o == rgb) ? (packed & 0xFF) : ((packed >> 16) & 0xFF)),
a(255) {}
//--------------------------------------------------------------------
void opacity(double a_)
{
if(a_ < 0.0) a_ = 0.0;
if(a_ > 1.0) a_ = 1.0;
a = int8u(a_ * 255.0);
}
//--------------------------------------------------------------------
double opacity() const
{
return double(a) / 255.0;
}
//--------------------------------------------------------------------
rgba8 gradient(rgba8 c, double k) const
{
rgba8 ret;
int ik = int(k * 256);
ret.r = int8u(int(r) + (((int(c.r) - int(r)) * ik) >> 8));
ret.g = int8u(int(g) + (((int(c.g) - int(g)) * ik) >> 8));
ret.b = int8u(int(b) + (((int(c.b) - int(b)) * ik) >> 8));
ret.a = int8u(int(a) + (((int(c.a) - int(a)) * ik) >> 8));
return ret;
}
rgba8 pre() const
{
return rgba8((r*a) >> 8, (g*a) >> 8, (b*a) >> 8, a);
}
};
//========================================================================
// Rendering buffer wrapper. This class does not know anything about
// memory organizations, all it does it keeps an array of pointers
// to each pixel row. The general rules of rendering are as follows.
//
// 1. Allocate or create somehow a rendering buffer itself. Since
// the library does not depend on any particular platform or
// architecture it was decided that it's your responsibility
// to create and destroy rendering buffers properly. You can use
// any available mechanism to create it - you can use a system API
// function, simple memory allocation, or even statically defined array.
// You also should know the memory organization (or possible variants)
// in your system. For example, there's an R,G,B or B,G,R organizations
// with one byte per component (three byter per pixel) is used very often.
// So, if you intend to use class render_bgr24, for example, you should
// allocate at least width*height*3 bytes of memory.
//
// 2. Create a rendering_buffer object and then call method attach(). It requires
// a pointer to the buffer itself, width and height of the buffer in
// pixels, and the length of the row in bytes. All these values must
// properly correspond to the memory organization. The argument stride
// is used because in reality the row length in bytes does not obligatory
// correspond with the width of the image in pixels, i.e. it cannot be
// simply calculated as width_in_pixels * bytes_per_pixel. For example,
// it must be aligned to 4 bytes in Windows bitmaps. Besides, the value
// of stride can be negative - it depends on the order of displaying
// the rendering buffer - from top to bottom or from bottom to top.
// In other words, if stride > 0 the pointers to each row will start
// from the beginning of the buffer and increase. If it < 0, the pointers
// start from the end of the buffer and decrease. It gives you an
// additional degree of freedom.
// Method attach() can be called more than once. The execution time of it
// is very little, still it allocates memory of height * sizeof(char*) bytes
// and has a loop while(height--) {...}, so it's unreasonable to call it
// every time before drawing any single pixel :-)
//
// 3. Create an object (or a number of objects) of a rendering class, such as
// renderer_bgr24_solid, renderer_bgr24_image and so on. These classes
// require a pointer to the renderer_buffer object, but they do not perform
// any considerable operations except storing this pointer. So, rendering
// objects can be created on demand almost any time. These objects know
// about concrete memory organization (this knowledge is hardcoded), so
// actually, the memory you allocated or created in clause 1 should
// actually be in correspondence to the needs of the rendering class.
//
// 4. Rener your image using rendering classes, for example, rasterizer
//
// 5. Display the result, or store it, or whatever. It's also your
// responsibility and depends on the platform.
//------------------------------------------------------------------------
class rendering_buffer
{
public:
~rendering_buffer();
//-----------------------------------------Initialization
rendering_buffer(unsigned char* buf,
unsigned width,
unsigned height,
int stride);
//-----------------------------------------Initialization
void attach(unsigned char* buf,
unsigned width,
unsigned height,
int stride);
//-----------------------------------------Acessors
const unsigned char* buf() const { return m_buf; }
unsigned width() const { return m_width; }
unsigned height() const { return m_height; }
int stride() const { return m_stride; }
bool inbox(int x, int y) const
{
return x >= 0 && y >= 0 && x < int(m_width) && y < int(m_height);
}
unsigned abs_stride() const
{
return (m_stride < 0) ? unsigned(-m_stride) : unsigned(m_stride);
}
unsigned char* row(unsigned y) { return m_rows[y]; }
const unsigned char* row(unsigned y) const { return m_rows[y]; }
private:
rendering_buffer(const rendering_buffer&);
const rendering_buffer& operator = (const rendering_buffer&);
private:
unsigned char* m_buf; // Pointer to renrdering buffer
unsigned char** m_rows; // Pointers to each row of the buffer
unsigned m_width; // Width in pixels
unsigned m_height; // Height in pixels
int m_stride; // Number of bytes per row. Can be < 0
unsigned m_max_height; // Maximal current height
};
//========================================================================
//
// This class is used to transfer data from class outline (or a similar one)
// to the rendering buffer. It's organized very simple. The class stores
// information of horizontal spans to render it into a pixel-map buffer.
// Each span has initial X, length, and an array of bytes that determine the
// alpha-values for each pixel. So, the restriction of using this class is 256
// levels of Anti-Aliasing, which is quite enough for any practical purpose.
// Before using this class you should know the minimal and maximal pixel
// coordinates of your scanline. The protocol of using is:
// 1. reset(min_x, max_x)
// 2. add_cell() / add_span() - accumulate scanline. You pass Y-coordinate
// into these functions in order to make scanline know the last Y. Before
// calling add_cell() / add_span() you should check with method is_ready(y)
// if the last Y has changed. It also checks if the scanline is not empty.
// When forming one scanline the next X coordinate must be always greater
// than the last stored one, i.e. it works only with ordered coordinates.
// 3. If the current scanline is_ready() you should render it and then call
// reset_spans() before adding new cells/spans.
//
// 4. Rendering:
//
// Scanline provides an iterator class that allows you to extract
// the spans and the cover values for each pixel. Be aware that clipping
// has not been done yet, so you should perform it yourself.
// Use scanline::iterator to render spans:
//-------------------------------------------------------------------------
//
// int base_x = sl.base_x(); // base X. Should be added to the span's X
// // "sl" is a const reference to the
// // scanline passed in.
//
// int y = sl.y(); // Y-coordinate of the scanline
//
// ************************************
// ...Perform vertical clipping here...
// ************************************
//
// scanline::iterator span(sl);
//
// unsigned char* row = m_rbuf->row(y); // The the address of the beginning
// // of the current row
//
// unsigned num_spans = sl.num_spans(); // Number of spans. It's guaranteed that
// // num_spans is always greater than 0.
//
// do
// {
// int x = span.next() + base_x; // The beginning X of the span
//
// const int8u covers* = span.covers(); // The array of the cover values
//
// int num_pix = span.num_pix(); // Number of pixels of the span.
// // Always greater than 0, still we
// // should use "int" instead of
// // "unsigned" because it's more
// // convenient for clipping
//
// **************************************
// ...Perform horizontal clipping here...
// ...you have x, covers, and pix_count..
// **************************************
//
// unsigned char* dst = row + x; // Calculate the start address of the row.
// // In this case we assume a simple
// // grayscale image 1-byte per pixel.
// do
// {
// *dst++ = *covers++; // Hypotetical rendering.
// }
// while(--num_pix);
// }
// while(--num_spans); // num_spans cannot be 0, so this loop is quite safe
//------------------------------------------------------------------------
//
// The question is: why should we accumulate the whole scanline when we
// could render just separate spans when they're ready?
// That's because using the scaline is in general faster. When is consists
// of more than one span the conditions for the processor cash system
// are better, because switching between two different areas of memory
// (that can be large ones) occurs less frequently.
//------------------------------------------------------------------------
class scanline
{
public:
enum { aa_shift = 8 };
class iterator
{
public:
iterator(const scanline& sl) :
m_covers(sl.m_covers),
m_cur_count(sl.m_counts),
m_cur_start_ptr(sl.m_start_ptrs)
{
}
int next()
{
++m_cur_count;
++m_cur_start_ptr;
return int(*m_cur_start_ptr - m_covers);
}
int num_pix() const { return int(*m_cur_count); }
const int8u* covers() const { return *m_cur_start_ptr; }
private:
const int8u* m_covers;
const int16u* m_cur_count;
const int8u* const* m_cur_start_ptr;
};
friend class iterator;
~scanline();
scanline();
void reset(int min_x, int max_x, int dx=0, int dy=0);
void reset_spans();
void add_cell(int x, int y, unsigned cover);
void add_span(int x, int y, unsigned len, unsigned cover);
int is_ready(int y) const;
int base_x() const { return m_min_x + m_dx; }
int y() const { return m_last_y + m_dy; }
unsigned num_spans() const { return m_num_spans; }
private:
scanline(const scanline&);
const scanline& operator = (const scanline&);
private:
int m_min_x;
unsigned m_max_len;
int m_dx;
int m_dy;
int m_last_x;
int m_last_y;
int8u* m_covers;
int8u** m_start_ptrs;
int16u* m_counts;
unsigned m_num_spans;
int8u** m_cur_start_ptr;
int16u* m_cur_count;
};
//------------------------------------------------------------------------
inline void scanline::reset_spans()
{
m_last_x = 0x7FFF;
m_last_y = 0x7FFF;
m_cur_count = m_counts;
m_cur_start_ptr = m_start_ptrs;
m_num_spans = 0;
}
//------------------------------------------------------------------------
inline void scanline::add_cell(int x, int y, unsigned cover)
{
x -= m_min_x;
m_covers[x] = (unsigned char)cover;
if(x == m_last_x+1)
{
(*m_cur_count)++;
}
else
{
*++m_cur_count = 1;
*++m_cur_start_ptr = m_covers + x;
m_num_spans++;
}
m_last_x = x;
m_last_y = y;
}
//------------------------------------------------------------------------
inline int scanline::is_ready(int y) const
{
return m_num_spans && (y ^ m_last_y);
}
//========================================================================
// This class template is used basically for rendering scanlines.
// The 'Span' argument is one of the span renderers, such as span_rgb24
// and others.
//
// Usage:
//
// // Creation
// agg::rendering_buffer rbuf(ptr, w, h, stride);
// agg::renderer<agg::span_rgb24> ren(rbuf);
// agg::rasterizer ras;
//
// // Clear the frame buffer
// ren.clear(agg::rgba8(0,0,0));
//
// // Making polygon
// // ras.move_to(. . .);
// // ras.line_to(. . .);
// // . . .
//
// // Rendering
// ras.render(ren, agg::rgba8(200, 100, 80));
//
//------------------------------------------------------------------------
template<class Span, class Type> class renderer
{
public:
//--------------------------------------------------------------------
renderer(rendering_buffer& rbuf) : m_rbuf(&rbuf)
{
}
//--------------------------------------------------------------------
void clear(const Type& c)
{
unsigned y;
for(y = 0; y < m_rbuf->height(); y++)
{
m_span.hline(m_rbuf->row(y), 0, m_rbuf->width(), c);
}
}
//--------------------------------------------------------------------
void pixel(int x, int y, const Type& c)
{
if(m_rbuf->inbox(x, y))
{
m_span.hline(m_rbuf->row(y), x, 1, c);
}
}
//--------------------------------------------------------------------
Type pixel(int x, int y) const
{
if(m_rbuf->inbox(x, y))
{
return m_span.get(m_rbuf->row(y), x);
}
return Type(0,0,0);
}
//--------------------------------------------------------------------
void render(const scanline& sl, const Type& c)
{
if(sl.y() < 0 || sl.y() >= int(m_rbuf->height()))
{
return;
}
unsigned num_spans = sl.num_spans();
int base_x = sl.base_x();
unsigned char* row = m_rbuf->row(sl.y());
scanline::iterator span(sl);
do
{
int x = span.next() + base_x;
const int8u* covers = span.covers();
int num_pix = span.num_pix();
if(x < 0)
{
num_pix += x;
if(num_pix <= 0) continue;
covers -= x;
x = 0;
}
if(x + num_pix >= int(m_rbuf->width()))
{
num_pix = m_rbuf->width() - x;
if(num_pix <= 0) continue;
}
m_span.render(row, x, num_pix, covers, c);
}
while(--num_spans);
}
//--------------------------------------------------------------------
rendering_buffer& rbuf() { return *m_rbuf; }
private:
rendering_buffer* m_rbuf;
Span m_span;
};
//------------------------------------------------------------------------
// These constants determine the subpixel accuracy, to be more precise,
// the number of bits of the fractional part of the coordinates.
// The possible coordinate capacity in bits can be calculated by formula:
// sizeof(int) * 8 - poly_base_shift * 2, i.e, for 32-bit integers and
// 8-bits fractional part the capacity is 16 bits or [-32768...32767].
enum
{
poly_base_shift = 8,
poly_base_size = 1 << poly_base_shift,
poly_base_mask = poly_base_size - 1
};
//------------------------------------------------------------------------
inline int poly_coord(double c)
{
return int(c * poly_base_size);
}
//------------------------------------------------------------------------
// A pixel cell. There're no constructors defined and it was done
// intentionally in order to avoid extra overhead when allocating an
// array of cells.
struct cell
{
int16 x;
int16 y;
int packed_coord;
int cover;
int area;
void set(int x, int y, int c, int a);
void set_coord(int x, int y);
void set_cover(int c, int a);
void add_cover(int c, int a);
};
//------------------------------------------------------------------------
// An internal class that implements the main rasterization algorithm.
// Used in the rasterizer. Should not be used direcly.
class outline
{
enum
{
cell_block_shift = 12,
cell_block_size = 1 << cell_block_shift,
cell_block_mask = cell_block_size - 1,
cell_block_pool = 256,
cell_block_limit = 1024
};
public:
~outline();
outline();
void reset();
void move_to(int x, int y);
void line_to(int x, int y);
int min_x() const { return m_min_x; }
int min_y() const { return m_min_y; }
int max_x() const { return m_max_x; }
int max_y() const { return m_max_y; }
unsigned num_cells() const {return m_num_cells; }
const cell* const* cells();
private:
outline(const outline&);
const outline& operator = (const outline&);
void set_cur_cell(int x, int y);
void add_cur_cell();
void sort_cells();
void render_scanline(int ey, int x1, int y1, int x2, int y2);
void render_line(int x1, int y1, int x2, int y2);
void allocate_block();
static void qsort_cells(cell** start, unsigned num);
private:
unsigned m_num_blocks;
unsigned m_max_blocks;
unsigned m_cur_block;
unsigned m_num_cells;
cell** m_cells;
cell* m_cur_cell_ptr;
cell** m_sorted_cells;
unsigned m_sorted_size;
cell m_cur_cell;
int m_cur_x;
int m_cur_y;
int m_close_x;
int m_close_y;
int m_min_x;
int m_min_y;
int m_max_x;
int m_max_y;
unsigned m_flags;
};
//------------------------------------------------------------------------
enum filling_rule_e
{
fill_non_zero,
fill_even_odd
};
//========================================================================
// Polygon rasterizer that is used to render filled polygons with
// high-quality Anti-Aliasing. Internally, by default, the class uses
// integer coordinates in format 24.8, i.e. 24 bits for integer part
// and 8 bits for fractional - see poly_base_shift. This class can be
// used in the following way:
//
// 1. filling_rule(filling_rule_e ft) - optional.
//
// 2. gamma() - optional.
//
// 3. reset()
//
// 4. move_to(x, y) / line_to(x, y) - make the polygon. One can create
// more than one contour, but each contour must consist of at least 3
// vertices, i.e. move_to(x1, y1); line_to(x2, y2); line_to(x3, y3);
// is the absolute minimum of vertices that define a triangle.
// The algorithm does not check either the number of vertices nor
// coincidence of their coordinates, but in the worst case it just
// won't draw anything.
// The orger of the vertices (clockwise or counterclockwise)
// is important when using the non-zero filling rule (fill_non_zero).
// In this case the vertex order of all the contours must be the same
// if you want your intersecting polygons to be without "holes".
// You actually can use different vertices order. If the contours do not
// intersect each other the order is not important anyway. If they do,
// contours with the same vertex order will be rendered without "holes"
// while the intersecting contours with different orders will have "holes".
//
// filling_rule() and gamma() can be called anytime before "sweeping".
//------------------------------------------------------------------------
class rasterizer
{
public:
enum
{
aa_shift = scanline::aa_shift,
aa_num = 1 << aa_shift,
aa_mask = aa_num - 1,
aa_2num = aa_num * 2,
aa_2mask = aa_2num - 1
};
rasterizer() :
m_filling_rule(fill_non_zero)
{
//------------------------------------------------------------------------
const int8u s_default_gamma[] =
{
0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8,
9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 16, 17, 18, 18,
19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28,
29, 29, 30, 30, 31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 37, 38,
39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 47, 47, 48, 49,
49, 50, 51, 51, 52, 53, 53, 54, 55, 55, 56, 57, 57, 58, 59, 60,
60, 61, 62, 62, 63, 64, 65, 65, 66, 67, 68, 68, 69, 70, 71, 71,
72, 73, 74, 74, 75, 76, 77, 78, 78, 79, 80, 81, 82, 83, 83, 84,
85, 86, 87, 88, 89, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100,101,101,102,103,104,105,106,107,108,109,110,111,112,114,115,
116,117,118,119,120,121,122,123,124,126,127,128,129,130,131,132,
134,135,136,137,139,140,141,142,144,145,146,147,149,150,151,153,
154,155,157,158,159,161,162,164,165,166,168,169,171,172,174,175,
177,178,180,181,183,184,186,188,189,191,192,194,195,197,199,200,
202,204,205,207,209,210,212,214,215,217,219,220,222,224,225,227,
229,230,232,234,236,237,239,241,242,244,246,248,249,251,253,255
};
memcpy(m_gamma, s_default_gamma, sizeof(m_gamma));
}
//--------------------------------------------------------------------
void reset() { m_outline.reset(); }
//--------------------------------------------------------------------
void filling_rule(filling_rule_e filling_rule)
{
m_filling_rule = filling_rule;
}
//--------------------------------------------------------------------
void gamma(double g);
void gamma(const int8u* g);
//--------------------------------------------------------------------
void move_to(int x, int y) { m_outline.move_to(x, y); }
void line_to(int x, int y) { m_outline.line_to(x, y); }
//--------------------------------------------------------------------
void move_to_d(double x, double y) { m_outline.move_to(poly_coord(x),
poly_coord(y)); }
void line_to_d(double x, double y) { m_outline.line_to(poly_coord(x),
poly_coord(y)); }
//--------------------------------------------------------------------
int min_x() const { return m_outline.min_x(); }
int min_y() const { return m_outline.min_y(); }
int max_x() const { return m_outline.max_x(); }
int max_y() const { return m_outline.max_y(); }
//--------------------------------------------------------------------
unsigned calculate_alpha(int area) const
{
int cover = area >> (poly_base_shift*2 + 1 - aa_shift);
if(cover < 0) cover = -cover;
if(m_filling_rule == fill_even_odd)
{
cover &= aa_2mask;
if(cover > aa_num)
{
cover = aa_2num - cover;
}
}
if(cover > aa_mask) cover = aa_mask;
return cover;
}
//--------------------------------------------------------------------
template<class Renderer, class Type> void render(Renderer& r,
const Type& c, //const rgba8& c,
int dx=0,
int dy=0)
{
const cell* const* cells = m_outline.cells();
if(m_outline.num_cells() == 0) return;
int x, y;
int cover;
int alpha;
int area;
m_scanline.reset(m_outline.min_x(), m_outline.max_x(), dx, dy);
cover = 0;
const cell* cur_cell = *cells++;
for(;;)
{
const cell* start_cell = cur_cell;
int coord = cur_cell->packed_coord;
x = cur_cell->x;
y = cur_cell->y;
area = start_cell->area;
cover += start_cell->cover;
//accumulate all start cells
while((cur_cell = *cells++) != 0)
{
if(cur_cell->packed_coord != coord) break;
area += cur_cell->area;
cover += cur_cell->cover;
}
if(area)
{
alpha = calculate_alpha((cover << (poly_base_shift + 1)) - area);
if(alpha)
{
if(m_scanline.is_ready(y))
{
r.render(m_scanline, c);
m_scanline.reset_spans();
}
m_scanline.add_cell(x, y, m_gamma[alpha]);
}
x++;
}
if(!cur_cell) break;
if(cur_cell->x > x)
{
alpha = calculate_alpha(cover << (poly_base_shift + 1));
if(alpha)
{
if(m_scanline.is_ready(y))
{
r.render(m_scanline, c);
m_scanline.reset_spans();
}
m_scanline.add_span(x, y,
cur_cell->x - x,
m_gamma[alpha]);
}
}
}
if(m_scanline.num_spans())
{
r.render(m_scanline, c);
}
}
//--------------------------------------------------------------------
bool hit_test(int tx, int ty);
private:
rasterizer(const rasterizer&);
const rasterizer& operator = (const rasterizer&);
private:
outline m_outline;
scanline m_scanline;
filling_rule_e m_filling_rule;
int8u m_gamma[256];
//static const int8u s_default_gamma[256];
};
//========================================================================
struct span_mono8
{
//--------------------------------------------------------------------
static unsigned mono8(unsigned r, unsigned g, unsigned b)
{
return (r * 77 + g * 150 + b * 29) >> 8;
}
//--------------------------------------------------------------------
static void render(unsigned char* ptr,
int x,
unsigned count,
const unsigned char* covers,
const rgba8& c)
{
unsigned char* p = ptr + x;
unsigned dst = mono8(c.r, c.g, c.b);
do
{
int alpha = (*covers++) * c.a;
unsigned src = *p;
*p++ = (((dst - src) * alpha) + (src << 16)) >> 16;
}
while(--count);
}
//--------------------------------------------------------------------
static void hline(unsigned char* ptr,
int x,
unsigned count,
const rgba8& c)
{
unsigned char* p = ptr + x;
unsigned v = mono8(c.r, c.g, c.b);
do { *p++ = v; } while(--count);
}
//--------------------------------------------------------------------
static rgba8 get(unsigned char* ptr, int x)
{
unsigned rgb = ptr[x];
rgba8 c;
c.r = rgb;
c.g = rgb;
c.b = rgb;
c.a = 255;
return c;
}
};
//========================================================================
struct span_rgb555
{
//--------------------------------------------------------------------
static int16u rgb555(unsigned r, unsigned g, unsigned b)
{
return ((r & 0xF8) << 7) | ((g & 0xF8) << 2) | (b >> 3);
}
//--------------------------------------------------------------------
static void render(unsigned char* ptr,
int x,
unsigned count,
const unsigned char* covers,
const rgba8& c)
{
int16u* p = ((int16u*)ptr) + x;
do
{
int16 rgb = *p;
int alpha = (*covers++) * c.a;
int r = (rgb >> 7) & 0xF8;
int g = (rgb >> 2) & 0xF8;
int b = (rgb << 3) & 0xF8;
*p++ = (((((c.r - r) * alpha) + (r << 16)) >> 9) & 0x7C00) |
(((((c.g - g) * alpha) + (g << 16)) >> 14) & 0x3E0) |
((((c.b - b) * alpha) + (b << 16)) >> 19);
}
while(--count);
}
//--------------------------------------------------------------------
static void hline(unsigned char* ptr,
int x,
unsigned count,
const rgba8& c)
{
int16u* p = ((int16u*)ptr) + x;
int16u v = rgb555(c.r, c.g, c.b);
do { *p++ = v; } while(--count);
}
//--------------------------------------------------------------------
static rgba8 get(unsigned char* ptr, int x)
{
int16u rgb = ((int16u*)ptr)[x];
rgba8 c;
c.r = (rgb >> 7) & 0xF8;
c.g = (rgb >> 2) & 0xF8;
c.b = (rgb << 3) & 0xF8;
c.a = 255;
return c;
}
};
//========================================================================
struct span_rgb565
{
//--------------------------------------------------------------------
static int16u rgb565(unsigned r, unsigned g, unsigned b)
{
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
//--------------------------------------------------------------------
static void render(unsigned char* ptr,
int x,
unsigned count,
const unsigned char* covers,
const rgba8& c)
{
int16u* p = ((int16u*)ptr) + x;
do
{
int16 rgb = *p;
int alpha = (*covers++) * c.a;
int r = (rgb >> 8) & 0xF8;
int g = (rgb >> 3) & 0xFC;
int b = (rgb << 3) & 0xF8;
*p++ = (((((c.r - r) * alpha) + (r << 16)) >> 8) & 0xF800) |
(((((c.g - g) * alpha) + (g << 16)) >> 13) & 0x7E0) |
((((c.b - b) * alpha) + (b << 16)) >> 19);
}
while(--count);
}
//--------------------------------------------------------------------
static void hline(unsigned char* ptr,
int x,
unsigned count,
const rgba8& c)
{
int16u* p = ((int16u*)ptr) + x;
int16u v = rgb565(c.r, c.g, c.b);
do { *p++ = v; } while(--count);
}
//--------------------------------------------------------------------
static rgba8 get(unsigned char* ptr, int x)
{
int16u rgb = ((int16u*)ptr)[x];
rgba8 c;
c.r = (rgb >> 8) & 0xF8;
c.g = (rgb >> 3) & 0xFC;
c.b = (rgb << 3) & 0xF8;
c.a = 255;
return c;
}
};
//========================================================================
struct span_bgr24
{
//--------------------------------------------------------------------
static void render(unsigned char* ptr,
int x,
unsigned count,
const unsigned char* covers,
const rgba8& c)
{
unsigned char* p = ptr + x + x + x;
do
{
int alpha = (*covers++) * c.a;
int b = p[0];
int g = p[1];
int r = p[2];
*p++ = (((c.b - b) * alpha) + (b << 16)) >> 16;
*p++ = (((c.g - g) * alpha) + (g << 16)) >> 16;
*p++ = (((c.r - r) * alpha) + (r << 16)) >> 16;
}
while(--count);
}
//--------------------------------------------------------------------
static void hline(unsigned char* ptr,
int x,
unsigned count,
const rgba8& c)
{
unsigned char* p = ptr + x + x + x;
do { *p++ = c.b; *p++ = c.g; *p++ = c.r; } while(--count);
}
//--------------------------------------------------------------------
static rgba8 get(unsigned char* ptr, int x)
{
unsigned char* p = ptr + x + x + x;
rgba8 c;
c.b = *p++;
c.g = *p++;
c.r = *p++;
c.a = 255;
return c;
}
};
//========================================================================
struct span_rgb24
{
//--------------------------------------------------------------------
static void render(unsigned char* ptr,
int x,
unsigned count,
const unsigned char* covers,
const rgba8& c)
{
unsigned char* p = ptr + x + x + x;
do
{
int alpha = (*covers++) * c.a;
int r = p[0];
int g = p[1];
int b = p[2];
*p++ = (((c.r - r) * alpha) + (r << 16)) >> 16;
*p++ = (((c.g - g) * alpha) + (g << 16)) >> 16;
*p++ = (((c.b - b) * alpha) + (b << 16)) >> 16;
}
while(--count);
}
//--------------------------------------------------------------------
static void hline(unsigned char* ptr,
int x,
unsigned count,
const rgba8& c)
{
unsigned char* p = ptr + x + x + x;
do { *p++ = c.r; *p++ = c.g; *p++ = c.b; } while(--count);
}
//--------------------------------------------------------------------
static rgba8 get(unsigned char* ptr, int x)
{
unsigned char* p = ptr + x + x + x;
rgba8 c;
c.r = *p++;
c.g = *p++;
c.b = *p++;
c.a = 255;
return c;
}
};
//========================================================================
struct span_abgr32
{
//--------------------------------------------------------------------
static void render(unsigned char* ptr,
int x,
unsigned count,
const unsigned char* covers,
const rgba8& c)
{
unsigned char* p = ptr + (x << 2);
do
{
int alpha = (*covers++) * c.a;
int a = p[0];
int b = p[1];
int g = p[2];
int r = p[3];
*p++ = (((c.a - a) * alpha) + (a << 16)) >> 16;
*p++ = (((c.b - b) * alpha) + (b << 16)) >> 16;
*p++ = (((c.g - g) * alpha) + (g << 16)) >> 16;
*p++ = (((c.r - r) * alpha) + (r << 16)) >> 16;
}
while(--count);
}
//--------------------------------------------------------------------
static void hline(unsigned char* ptr,
int x,
unsigned count,
const rgba8& c)
{
unsigned char* p = ptr + (x << 2);
do { *p++ = c.a; *p++ = c.b; *p++ = c.g; *p++ = c.r; } while(--count);
}
//--------------------------------------------------------------------
static rgba8 get(unsigned char* ptr, int x)
{
unsigned char* p = ptr + (x << 2);
rgba8 c;
c.a = *p++;
c.b = *p++;
c.g = *p++;
c.r = *p;
return c;
}
};
//========================================================================
struct span_argb32
{
//--------------------------------------------------------------------
static void render(unsigned char* ptr,
int x,
unsigned count,
const unsigned char* covers,
const rgba8& c)
{
unsigned char* p = ptr + (x << 2);
do
{
int alpha = (*covers++) * c.a;
int a = p[0];
int r = p[1];
int g = p[2];
int b = p[3];
*p++ = (((c.a - a) * alpha) + (a << 16)) >> 16;
*p++ = (((c.r - r) * alpha) + (r << 16)) >> 16;
*p++ = (((c.g - g) * alpha) + (g << 16)) >> 16;
*p++ = (((c.b - b) * alpha) + (b << 16)) >> 16;
}
while(--count);
}
//--------------------------------------------------------------------
static void hline(unsigned char* ptr,
int x,
unsigned count,
const rgba8& c)
{
unsigned char* p = ptr + (x << 2);
do { *p++ = c.a; *p++ = c.r; *p++ = c.g; *p++ = c.b; } while(--count);
}
//--------------------------------------------------------------------
static rgba8 get(unsigned char* ptr, int x)
{
unsigned char* p = ptr + (x << 2);
rgba8 c;
c.a = *p++;
c.r = *p++;
c.g = *p++;
c.b = *p;
return c;
}
};
//========================================================================
struct span_bgra32
{
//--------------------------------------------------------------------
static void render(unsigned char* ptr,
int x,
unsigned count,
const unsigned char* covers,
const rgba8& c)
{
unsigned char* p = ptr + (x << 2);
do
{
int alpha = (*covers++) * c.a;
int b = p[0];
int g = p[1];
int r = p[2];
int a = p[3];
*p++ = (((c.b - b) * alpha) + (b << 16)) >> 16;
*p++ = (((c.g - g) * alpha) + (g << 16)) >> 16;
*p++ = (((c.r - r) * alpha) + (r << 16)) >> 16;
*p++ = (((c.a - a) * alpha) + (a << 16)) >> 16;
}
while(--count);
}
//--------------------------------------------------------------------
static void hline(unsigned char* ptr,
int x,
unsigned count,
const rgba8& c)
{
unsigned char* p = ptr + (x << 2);
do { *p++ = c.b; *p++ = c.g; *p++ = c.r; *p++ = c.a; } while(--count);
}
//--------------------------------------------------------------------
static rgba8 get(unsigned char* ptr, int x)
{
unsigned char* p = ptr + (x << 2);
rgba8 c;
c.b = *p++;
c.g = *p++;
c.r = *p++;
c.a = *p;
return c;
}
};
//========================================================================
struct span_rgba32
{
//--------------------------------------------------------------------
static void render(unsigned char* ptr,
int x,
unsigned count,
const unsigned char* covers,
const rgba8& c)
{
unsigned char* p = ptr + (x << 2);
do
{
int alpha = (*covers++) * c.a;
int r = p[0];
int g = p[1];
int b = p[2];
int a = p[3];
*p++ = (((c.r - r) * alpha) + (r << 16)) >> 16;
*p++ = (((c.g - g) * alpha) + (g << 16)) >> 16;
*p++ = (((c.b - b) * alpha) + (b << 16)) >> 16;
*p++ = (((c.a - a) * alpha) + (a << 16)) >> 16;
}
while(--count);
}
//--------------------------------------------------------------------
static void hline(unsigned char* ptr,
int x,
unsigned count,
const rgba8& c)
{
unsigned char* p = ptr + (x << 2);
do { *p++ = c.r; *p++ = c.g; *p++ = c.b; *p++ = c.a; } while(--count);
}
//--------------------------------------------------------------------
static rgba8 get(unsigned char* ptr, int x)
{
unsigned char* p = ptr + (x << 2);
rgba8 c;
c.r = *p++;
c.g = *p++;
c.b = *p++;
c.a = *p;
return c;
}
};
}
// ===== agg.cpp ===== //
namespace agg
{
//========================================================================
//------------------------------------------------------------------------
inline
rendering_buffer::~rendering_buffer()
{
delete [] m_rows;
}
//------------------------------------------------------------------------
inline
rendering_buffer::rendering_buffer(unsigned char* buf,
unsigned width,
unsigned height,
int stride) :
m_buf(0),
m_rows(0),
m_width(0),
m_height(0),
m_stride(0),
m_max_height(0)
{
attach(buf, width, height, stride);
}
//------------------------------------------------------------------------
inline
void rendering_buffer::attach(unsigned char* buf,
unsigned width,
unsigned height,
int stride)
{
m_buf = buf;
m_width = width;
m_height = height;
m_stride = stride;
if(height > m_max_height)
{
delete [] m_rows;
m_rows = new unsigned char* [m_max_height = height];
}
unsigned char* row_ptr = m_buf;
if(stride < 0)
{
row_ptr = m_buf - int(height - 1) * stride;
}
unsigned char** rows = m_rows;
while(height--)
{
*rows++ = row_ptr;
row_ptr += stride;
}
}
//========================================================================
//------------------------------------------------------------------------
inline
scanline::~scanline()
{
if ( m_counts ) delete [] m_counts;
if ( m_start_ptrs ) delete [] m_start_ptrs;
if ( m_covers ) delete [] m_covers;
}
//------------------------------------------------------------------------
inline
scanline::scanline()
: m_min_x(0),
m_max_len(0),
m_dx(0),
m_dy(0),
m_last_x(0x7FFF),
m_last_y(0x7FFF),
m_covers(0),
m_start_ptrs(0),
m_counts(0),
m_num_spans(0),
m_cur_start_ptr(0),
m_cur_count(0)
{
}
//------------------------------------------------------------------------
inline
void scanline::reset(int min_x, int max_x, int dx, int dy)
{
unsigned max_len = max_x - min_x + 2;
if(max_len > m_max_len)
{
if ( m_counts ) delete [] m_counts;
if ( m_start_ptrs ) delete [] m_start_ptrs;
if ( m_covers ) delete [] m_covers;
m_covers = new unsigned char [max_len];
m_start_ptrs = new unsigned char* [max_len];
m_counts = new int16u[max_len];
m_max_len = max_len;
}
m_dx = dx;
m_dy = dy;
m_last_x = 0x7FFF;
m_last_y = 0x7FFF;
m_min_x = min_x;
m_cur_count = m_counts;
m_cur_start_ptr = m_start_ptrs;
m_num_spans = 0;
}
//------------------------------------------------------------------------
inline
void scanline::add_span(int x, int y, unsigned num, unsigned cover)
{
x -= m_min_x;
memset(m_covers + x, cover, num);
if(x == m_last_x+1)
{
(*m_cur_count) += (int16u)num;
}
else
{
*++m_cur_count = (int16u)num;
*++m_cur_start_ptr = m_covers + x;
m_num_spans++;
}
m_last_x = x + num - 1;
m_last_y = y;
}
//========================================================================
//========================================================================
enum
{
not_closed = 1,
sort_required = 2
};
//------------------------------------------------------------------------
inline void cell::set_cover(int c, int a)
{
cover = c;
area = a;
}
//------------------------------------------------------------------------
inline void cell::add_cover(int c, int a)
{
cover += c;
area += a;
}
//------------------------------------------------------------------------
inline void cell::set_coord(int cx, int cy)
{
x = int16(cx);
y = int16(cy);
packed_coord = (cy << 16) + cx;
}
//------------------------------------------------------------------------
inline void cell::set(int cx, int cy, int c, int a)
{
x = int16(cx);
y = int16(cy);
packed_coord = (cy << 16) + cx;
cover = c;
area = a;
}
//------------------------------------------------------------------------
inline outline::~outline()
{
delete [] m_sorted_cells;
if(m_num_blocks)
{
cell** ptr = m_cells + m_num_blocks - 1;
while(m_num_blocks--)
{
delete [] *ptr;
ptr--;
}
delete [] m_cells;
}
}
//------------------------------------------------------------------------
inline outline::outline() :
m_num_blocks(0),
m_max_blocks(0),
m_cur_block(0),
m_num_cells(0),
m_cells(0),
m_cur_cell_ptr(0),
m_sorted_cells(0),
m_sorted_size(0),
m_cur_x(0),
m_cur_y(0),
m_close_x(0),
m_close_y(0),
m_min_x(0x7FFFFFFF),
m_min_y(0x7FFFFFFF),
m_max_x(-0x7FFFFFFF),
m_max_y(-0x7FFFFFFF),
m_flags(sort_required)
{
m_cur_cell.set(0x7FFF, 0x7FFF, 0, 0);
}
//------------------------------------------------------------------------
inline
void outline::reset()
{
m_num_cells = 0;
m_cur_block = 0;
m_cur_cell.set(0x7FFF, 0x7FFF, 0, 0);
m_flags |= sort_required;
m_flags &= ~not_closed;
m_min_x = 0x7FFFFFFF;
m_min_y = 0x7FFFFFFF;
m_max_x = -0x7FFFFFFF;
m_max_y = -0x7FFFFFFF;
}
//------------------------------------------------------------------------
inline
void outline::allocate_block()
{
if(m_cur_block >= m_num_blocks)
{
if(m_num_blocks >= m_max_blocks)
{
cell** new_cells = new cell* [m_max_blocks + cell_block_pool];
if(m_cells)
{
memcpy(new_cells, m_cells, m_max_blocks * sizeof(cell*));
delete [] m_cells;
}
m_cells = new_cells;
m_max_blocks += cell_block_pool;
}
m_cells[m_num_blocks++] = new cell [unsigned(cell_block_size)];
}
m_cur_cell_ptr = m_cells[m_cur_block++];
}
//------------------------------------------------------------------------
inline void outline::add_cur_cell()
{
if(m_cur_cell.area | m_cur_cell.cover)
{
if((m_num_cells & cell_block_mask) == 0)
{
if(m_num_blocks >= cell_block_limit) return;
allocate_block();
}
*m_cur_cell_ptr++ = m_cur_cell;
m_num_cells++;
}
}
//------------------------------------------------------------------------
inline void outline::set_cur_cell(int x, int y)
{
if(m_cur_cell.packed_coord != (y << 16) + x)
{
add_cur_cell();
m_cur_cell.set(x, y, 0, 0);
}
}
//------------------------------------------------------------------------
inline void outline::render_scanline(int ey, int x1, int y1, int x2, int y2)
{
int ex1 = x1 >> poly_base_shift;
int ex2 = x2 >> poly_base_shift;
int fx1 = x1 & poly_base_mask;
int fx2 = x2 & poly_base_mask;
int delta, p, first, dx;
int incr, lift, mod, rem;
//trivial case. Happens often
if(y1 == y2)
{
set_cur_cell(ex2, ey);
return;
}
//everything is located in a single cell. That is easy!
if(ex1 == ex2)
{
delta = y2 - y1;
m_cur_cell.add_cover(delta, (fx1 + fx2) * delta);
return;
}
//ok, we'll have to render a run of adjacent cells on the same
//scanline...
p = (poly_base_size - fx1) * (y2 - y1);
first = poly_base_size;
incr = 1;
dx = x2 - x1;
if(dx < 0)
{
p = fx1 * (y2 - y1);
first = 0;
incr = -1;
dx = -dx;
}
delta = p / dx;
mod = p % dx;
if(mod < 0)
{
delta--;
mod += dx;
}
m_cur_cell.add_cover(delta, (fx1 + first) * delta);
ex1 += incr;
set_cur_cell(ex1, ey);
y1 += delta;
if(ex1 != ex2)
{
p = poly_base_size * (y2 - y1 + delta);
lift = p / dx;
rem = p % dx;
if (rem < 0)
{
lift--;
rem += dx;
}
mod -= dx;
while (ex1 != ex2)
{
delta = lift;
mod += rem;
if(mod >= 0)
{
mod -= dx;
delta++;
}
m_cur_cell.add_cover(delta, (poly_base_size) * delta);
y1 += delta;
ex1 += incr;
set_cur_cell(ex1, ey);
}
}
delta = y2 - y1;
m_cur_cell.add_cover(delta, (fx2 + poly_base_size - first) * delta);
}
//------------------------------------------------------------------------
inline
void outline::render_line(int x1, int y1, int x2, int y2)
{
int ey1 = y1 >> poly_base_shift;
int ey2 = y2 >> poly_base_shift;
int fy1 = y1 & poly_base_mask;
int fy2 = y2 & poly_base_mask;
int dx, dy, x_from, x_to;
int p, rem, mod, lift, delta, first, incr;
if(ey1 < m_min_y) m_min_y = ey1;
if(ey1+1 > m_max_y) m_max_y = ey1+1;
if(ey2 < m_min_y) m_min_y = ey2;
if(ey2+1 > m_max_y) m_max_y = ey2+1;
dx = x2 - x1;
dy = y2 - y1;
//everything is on a single scanline
if(ey1 == ey2)
{
render_scanline(ey1, x1, fy1, x2, fy2);
return;
}
//Vertical line - we have to calculate start and end cells,
//and then - the common values of the area and coverage for
//all cells of the line. We know exactly there's only one
//cell, so, we don't have to call render_scanline().
incr = 1;
if(dx == 0)
{
int ex = x1 >> poly_base_shift;
int two_fx = (x1 - (ex << poly_base_shift)) << 1;
int area;
first = poly_base_size;
if(dy < 0)
{
first = 0;
incr = -1;
}
x_from = x1;
//render_scanline(ey1, x_from, fy1, x_from, first);
delta = first - fy1;
m_cur_cell.add_cover(delta, two_fx * delta);
ey1 += incr;
set_cur_cell(ex, ey1);
delta = first + first - poly_base_size;
area = two_fx * delta;
while(ey1 != ey2)
{
//render_scanline(ey1, x_from, poly_base_size - first, x_from, first);
m_cur_cell.set_cover(delta, area);
ey1 += incr;
set_cur_cell(ex, ey1);
}
//render_scanline(ey1, x_from, poly_base_size - first, x_from, fy2);
delta = fy2 - poly_base_size + first;
m_cur_cell.add_cover(delta, two_fx * delta);
return;
}
//ok, we have to render several scanlines
p = (poly_base_size - fy1) * dx;
first = poly_base_size;
if(dy < 0)
{
p = fy1 * dx;
first = 0;
incr = -1;
dy = -dy;
}
delta = p / dy;
mod = p % dy;
if(mod < 0)
{
delta--;
mod += dy;
}
x_from = x1 + delta;
render_scanline(ey1, x1, fy1, x_from, first);
ey1 += incr;
set_cur_cell(x_from >> poly_base_shift, ey1);
if(ey1 != ey2)
{
p = poly_base_size * dx;
lift = p / dy;
rem = p % dy;
if(rem < 0)
{
lift--;
rem += dy;
}
mod -= dy;
while(ey1 != ey2)
{
delta = lift;
mod += rem;
if (mod >= 0)
{
mod -= dy;
delta++;
}
x_to = x_from + delta;
render_scanline(ey1, x_from, poly_base_size - first, x_to, first);
x_from = x_to;
ey1 += incr;
set_cur_cell(x_from >> poly_base_shift, ey1);
}
}
render_scanline(ey1, x_from, poly_base_size - first, x2, fy2);
}
//------------------------------------------------------------------------
inline
void outline::move_to(int x, int y)
{
if((m_flags & sort_required) == 0) reset();
if(m_flags & not_closed) line_to(m_close_x, m_close_y);
set_cur_cell(x >> poly_base_shift, y >> poly_base_shift);
m_close_x = m_cur_x = x;
m_close_y = m_cur_y = y;
}
//------------------------------------------------------------------------
inline
void outline::line_to(int x, int y)
{
if((m_flags & sort_required) && ((m_cur_x ^ x) | (m_cur_y ^ y)))
{
int c;
c = m_cur_x >> poly_base_shift;
if(c < m_min_x) m_min_x = c;
++c;
if(c > m_max_x) m_max_x = c;
c = x >> poly_base_shift;
if(c < m_min_x) m_min_x = c;
++c;
if(c > m_max_x) m_max_x = c;
render_line(m_cur_x, m_cur_y, x, y);
m_cur_x = x;
m_cur_y = y;
m_flags |= not_closed;
}
}
enum
{
qsort_threshold = 9
};
//------------------------------------------------------------------------
template <class T> static inline void swap_cells(T* a, T* b)
{
T temp = *a;
*a = *b;
*b = temp;
}
//------------------------------------------------------------------------
template <class T> static inline bool less_than(T* a, T* b)
{
return (*a)->packed_coord < (*b)->packed_coord;
}
//------------------------------------------------------------------------
inline
void outline::qsort_cells(cell** start, unsigned num)
{
cell** stack[80];
cell*** top;
cell** limit;
cell** base;
limit = start + num;
base = start;
top = stack;
for (;;)
{
int len = int(limit - base);
cell** i;
cell** j;
cell** pivot;
if(len > qsort_threshold)
{
// we use base + len/2 as the pivot
pivot = base + len / 2;
swap_cells(base, pivot);
i = base + 1;
j = limit - 1;
// now ensure that *i <= *base <= *j
if(less_than(j, i))
{
swap_cells(i, j);
}
if(less_than(base, i))
{
swap_cells(base, i);
}
if(less_than(j, base))
{
swap_cells(base, j);
}
for(;;)
{
do i++; while( less_than(i, base) );
do j--; while( less_than(base, j) );
if ( i > j )
{
break;
}
swap_cells(i, j);
}
swap_cells(base, j);
// now, push the largest sub-array
if(j - base > limit - i)
{
top[0] = base;
top[1] = j;
base = i;
}
else
{
top[0] = i;
top[1] = limit;
limit = j;
}
top += 2;
}
else
{
// the sub-array is small, perform insertion sort
j = base;
i = j + 1;
for(; i < limit; j = i, i++)
{
for(; less_than(j + 1, j); j--)
{
swap_cells(j + 1, j);
if (j == base)
{
break;
}
}
}
if(top > stack)
{
top -= 2;
base = top[0];
limit = top[1];
}
else
{
break;
}
}
}
}
//------------------------------------------------------------------------
inline
void outline::sort_cells()
{
if(m_num_cells == 0) return;
if(m_num_cells > m_sorted_size)
{
delete [] m_sorted_cells;
m_sorted_size = m_num_cells;
m_sorted_cells = new cell* [m_num_cells + 1];
}
cell** sorted_ptr = m_sorted_cells;
cell** block_ptr = m_cells;
cell* cell_ptr;
unsigned nb = m_num_cells >> cell_block_shift;
unsigned i;
while(nb--)
{
cell_ptr = *block_ptr++;
i = cell_block_size;
while(i--)
{
*sorted_ptr++ = cell_ptr++;
}
}
cell_ptr = *block_ptr++;
i = m_num_cells & cell_block_mask;
while(i--)
{
*sorted_ptr++ = cell_ptr++;
}
m_sorted_cells[m_num_cells] = 0;
qsort_cells(m_sorted_cells, m_num_cells);
}
//------------------------------------------------------------------------
inline
const cell* const* outline::cells()
{
if(m_flags & not_closed)
{
line_to(m_close_x, m_close_y);
m_flags &= ~not_closed;
}
//Perform sort only the first time.
if(m_flags & sort_required)
{
add_cur_cell();
if(m_num_cells == 0) return 0;
sort_cells();
m_flags &= ~sort_required;
}
return m_sorted_cells;
}
//------------------------------------------------------------------------
inline
void rasterizer::gamma(double g)
{
unsigned i;
for(i = 0; i < 256; i++)
{
m_gamma[i] = (unsigned char)(pow(double(i) / 255.0, g) * 255.0);
}
}
//------------------------------------------------------------------------
inline
void rasterizer::gamma(const int8u* g)
{
memcpy(m_gamma, g, sizeof(m_gamma));
}
//------------------------------------------------------------------------
inline
bool rasterizer::hit_test(int tx, int ty)
{
const cell* const* cells = m_outline.cells();
if(m_outline.num_cells() == 0) return false;
int x, y;
int cover;
int alpha;
int area;
cover = 0;
const cell* cur_cell = *cells++;
for(;;)
{
const cell* start_cell = cur_cell;
int coord = cur_cell->packed_coord;
x = cur_cell->x;
y = cur_cell->y;
if(y > ty) return false;
area = start_cell->area;
cover += start_cell->cover;
while((cur_cell = *cells++) != 0)
{
if(cur_cell->packed_coord != coord) break;
area += cur_cell->area;
cover += cur_cell->cover;
}
if(area)
{
alpha = calculate_alpha((cover << (poly_base_shift + 1)) - area);
if(alpha)
{
if(tx == x && ty == y) return true;
}
x++;
}
if(!cur_cell) break;
if(cur_cell->x > x)
{
alpha = calculate_alpha(cover << (poly_base_shift + 1));
if(alpha)
{
if(ty == y && tx >= x && tx <= cur_cell->x) return true;
}
}
}
return false;
}
}
#endif // AGGLITE_H