DYT/Tool/OpenSceneGraph-3.6.5/include/Imath/ImathLineAlgo.h
2024-12-25 07:49:36 +08:00

218 lines
5.5 KiB
C++

//
// SPDX-License-Identifier: BSD-3-Clause
// Copyright Contributors to the OpenEXR Project.
//
//
// Algorithms applied to or in conjunction with Imath::Line class
//
#ifndef INCLUDED_IMATHLINEALGO_H
#define INCLUDED_IMATHLINEALGO_H
#include "ImathFun.h"
#include "ImathLine.h"
#include "ImathNamespace.h"
#include "ImathVecAlgo.h"
IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
///
/// Compute point1 and point2 such that point1 is on line1, point2
/// is on line2 and the distance between point1 and point2 is minimal.
///
/// This function returns true if point1 and point2 can be computed,
/// or false if line1 and line2 are parallel or nearly parallel.
/// This function assumes that line1.dir and line2.dir are normalized.
///
template <class T>
IMATH_CONSTEXPR14 bool
closestPoints (const Line3<T>& line1, const Line3<T>& line2, Vec3<T>& point1, Vec3<T>& point2) IMATH_NOEXCEPT
{
Vec3<T> w = line1.pos - line2.pos;
T d1w = line1.dir ^ w;
T d2w = line2.dir ^ w;
T d1d2 = line1.dir ^ line2.dir;
T n1 = d1d2 * d2w - d1w;
T n2 = d2w - d1d2 * d1w;
T d = 1 - d1d2 * d1d2;
T absD = abs (d);
if ((absD > 1) || (abs (n1) < std::numeric_limits<T>::max() * absD && abs (n2) < std::numeric_limits<T>::max() * absD))
{
point1 = line1 (n1 / d);
point2 = line2 (n2 / d);
return true;
}
else
{
return false;
}
}
///
/// Given a line and a triangle (v0, v1, v2), the intersect() function
/// finds the intersection of the line and the plane that contains the
/// triangle.
///
/// If the intersection point cannot be computed, either because the
/// line and the triangle's plane are nearly parallel or because the
/// triangle's area is very small, intersect() returns false.
///
/// If the intersection point is outside the triangle, intersect
/// returns false.
///
/// If the intersection point, pt, is inside the triangle, intersect()
/// computes a front-facing flag and the barycentric coordinates of
/// the intersection point, and returns true.
///
/// The front-facing flag is true if the dot product of the triangle's
/// normal, (v2-v1)%(v1-v0), and the line's direction is negative.
///
/// The barycentric coordinates have the following property:
///
/// pt = v0 * barycentric.x + v1 * barycentric.y + v2 * barycentric.z
///
template <class T>
IMATH_CONSTEXPR14 bool
intersect (const Line3<T>& line,
const Vec3<T>& v0,
const Vec3<T>& v1,
const Vec3<T>& v2,
Vec3<T>& pt,
Vec3<T>& barycentric,
bool& front) IMATH_NOEXCEPT
{
Vec3<T> edge0 = v1 - v0;
Vec3<T> edge1 = v2 - v1;
Vec3<T> normal = edge1 % edge0;
T l = normal.length();
if (l != 0)
normal /= l;
else
return false; // zero-area triangle
//
// d is the distance of line.pos from the plane that contains the triangle.
// The intersection point is at line.pos + (d/nd) * line.dir.
//
T d = normal ^ (v0 - line.pos);
T nd = normal ^ line.dir;
if (abs (nd) > 1 || abs (d) < std::numeric_limits<T>::max() * abs (nd))
pt = line (d / nd);
else
return false; // line and plane are nearly parallel
//
// Compute the barycentric coordinates of the intersection point.
// The intersection is inside the triangle if all three barycentric
// coordinates are between zero and one.
//
{
Vec3<T> en = edge0.normalized();
Vec3<T> a = pt - v0;
Vec3<T> b = v2 - v0;
Vec3<T> c = (a - en * (en ^ a));
Vec3<T> d = (b - en * (en ^ b));
T e = c ^ d;
T f = d ^ d;
if (e >= 0 && e <= f)
barycentric.z = e / f;
else
return false; // outside
}
{
Vec3<T> en = edge1.normalized();
Vec3<T> a = pt - v1;
Vec3<T> b = v0 - v1;
Vec3<T> c = (a - en * (en ^ a));
Vec3<T> d = (b - en * (en ^ b));
T e = c ^ d;
T f = d ^ d;
if (e >= 0 && e <= f)
barycentric.x = e / f;
else
return false; // outside
}
barycentric.y = 1 - barycentric.x - barycentric.z;
if (barycentric.y < 0)
return false; // outside
front = ((line.dir ^ normal) < 0);
return true;
}
///
/// Return the vertex that is closest to the given line. The returned
/// point is either v0, v1, or v2.
///
template <class T>
IMATH_CONSTEXPR14 Vec3<T>
closestVertex (const Vec3<T>& v0, const Vec3<T>& v1, const Vec3<T>& v2, const Line3<T>& l) IMATH_NOEXCEPT
{
Vec3<T> nearest = v0;
T neardot = (v0 - l.closestPointTo (v0)).length2();
T tmp = (v1 - l.closestPointTo (v1)).length2();
if (tmp < neardot)
{
neardot = tmp;
nearest = v1;
}
tmp = (v2 - l.closestPointTo (v2)).length2();
if (tmp < neardot)
{
neardot = tmp;
nearest = v2;
}
return nearest;
}
///
/// Rotate the point p around the line l by the given angle.
///
template <class T>
IMATH_CONSTEXPR14 Vec3<T>
rotatePoint (const Vec3<T> p, Line3<T> l, T angle) IMATH_NOEXCEPT
{
//
// Form a coordinate frame with <x,y,a>. The rotation is the in xy
// plane.
//
Vec3<T> q = l.closestPointTo (p);
Vec3<T> x = p - q;
T radius = x.length();
x.normalize();
Vec3<T> y = (x % l.dir).normalize();
T cosangle = std::cos (angle);
T sinangle = std::sin (angle);
Vec3<T> r = q + x * radius * cosangle + y * radius * sinangle;
return r;
}
IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
#endif // INCLUDED_IMATHLINEALGO_H