bmh/FlightSimulation/Plugins/CesiumForUnreal_5.4/Source/CesiumRuntime/Public/CesiumMetadataValue.h
2025-02-07 22:52:32 +08:00

847 lines
30 KiB
C++

// Copyright 2020-2024 CesiumGS, Inc. and Contributors
#pragma once
#include "CesiumGltf/PropertyTypeTraits.h"
#include "CesiumMetadataValueType.h"
#include "CesiumPropertyArray.h"
#include "Kismet/BlueprintFunctionLibrary.h"
#include "UObject/ObjectMacros.h"
#include <glm/glm.hpp>
#include <optional>
#include <swl/variant.hpp>
#include "CesiumMetadataValue.generated.h"
/**
* A Blueprint-accessible wrapper for a glTF metadata value.
*/
USTRUCT(BlueprintType)
struct CESIUMRUNTIME_API FCesiumMetadataValue {
GENERATED_USTRUCT_BODY()
private:
#pragma region ValueType declaration
template <typename T> using ArrayView = CesiumGltf::PropertyArrayView<T>;
using ValueType = swl::variant<
swl::monostate,
int8_t,
uint8_t,
int16_t,
uint16_t,
int32_t,
uint32_t,
int64_t,
uint64_t,
float,
double,
bool,
std::string_view,
glm::vec<2, int8_t>,
glm::vec<2, uint8_t>,
glm::vec<2, int16_t>,
glm::vec<2, uint16_t>,
glm::vec<2, int32_t>,
glm::vec<2, uint32_t>,
glm::vec<2, int64_t>,
glm::vec<2, uint64_t>,
glm::vec<2, float>,
glm::vec<2, double>,
glm::vec<3, int8_t>,
glm::vec<3, uint8_t>,
glm::vec<3, int16_t>,
glm::vec<3, uint16_t>,
glm::vec<3, int32_t>,
glm::vec<3, uint32_t>,
glm::vec<3, int64_t>,
glm::vec<3, uint64_t>,
glm::vec<3, float>,
glm::vec<3, double>,
glm::vec<4, int8_t>,
glm::vec<4, uint8_t>,
glm::vec<4, int16_t>,
glm::vec<4, uint16_t>,
glm::vec<4, int32_t>,
glm::vec<4, uint32_t>,
glm::vec<4, int64_t>,
glm::vec<4, uint64_t>,
glm::vec<4, float>,
glm::vec<4, double>,
glm::mat<2, 2, int8_t>,
glm::mat<2, 2, uint8_t>,
glm::mat<2, 2, int16_t>,
glm::mat<2, 2, uint16_t>,
glm::mat<2, 2, int32_t>,
glm::mat<2, 2, uint32_t>,
glm::mat<2, 2, int64_t>,
glm::mat<2, 2, uint64_t>,
glm::mat<2, 2, float>,
glm::mat<2, 2, double>,
glm::mat<3, 3, int8_t>,
glm::mat<3, 3, uint8_t>,
glm::mat<3, 3, int16_t>,
glm::mat<3, 3, uint16_t>,
glm::mat<3, 3, int32_t>,
glm::mat<3, 3, uint32_t>,
glm::mat<3, 3, int64_t>,
glm::mat<3, 3, uint64_t>,
glm::mat<3, 3, float>,
glm::mat<3, 3, double>,
glm::mat<4, 4, int8_t>,
glm::mat<4, 4, uint8_t>,
glm::mat<4, 4, int16_t>,
glm::mat<4, 4, uint16_t>,
glm::mat<4, 4, int32_t>,
glm::mat<4, 4, uint32_t>,
glm::mat<4, 4, int64_t>,
glm::mat<4, 4, uint64_t>,
glm::mat<4, 4, float>,
glm::mat<4, 4, double>,
ArrayView<int8_t>,
ArrayView<uint8_t>,
ArrayView<int16_t>,
ArrayView<uint16_t>,
ArrayView<int32_t>,
ArrayView<uint32_t>,
ArrayView<int64_t>,
ArrayView<uint64_t>,
ArrayView<float>,
ArrayView<double>,
ArrayView<bool>,
ArrayView<std::string_view>,
ArrayView<glm::vec<2, int8_t>>,
ArrayView<glm::vec<2, uint8_t>>,
ArrayView<glm::vec<2, int16_t>>,
ArrayView<glm::vec<2, uint16_t>>,
ArrayView<glm::vec<2, int32_t>>,
ArrayView<glm::vec<2, uint32_t>>,
ArrayView<glm::vec<2, int64_t>>,
ArrayView<glm::vec<2, uint64_t>>,
ArrayView<glm::vec<2, float>>,
ArrayView<glm::vec<2, double>>,
ArrayView<glm::vec<3, int8_t>>,
ArrayView<glm::vec<3, uint8_t>>,
ArrayView<glm::vec<3, int16_t>>,
ArrayView<glm::vec<3, uint16_t>>,
ArrayView<glm::vec<3, int32_t>>,
ArrayView<glm::vec<3, uint32_t>>,
ArrayView<glm::vec<3, int64_t>>,
ArrayView<glm::vec<3, uint64_t>>,
ArrayView<glm::vec<3, float>>,
ArrayView<glm::vec<3, double>>,
ArrayView<glm::vec<4, int8_t>>,
ArrayView<glm::vec<4, uint8_t>>,
ArrayView<glm::vec<4, int16_t>>,
ArrayView<glm::vec<4, uint16_t>>,
ArrayView<glm::vec<4, int32_t>>,
ArrayView<glm::vec<4, uint32_t>>,
ArrayView<glm::vec<4, int64_t>>,
ArrayView<glm::vec<4, uint64_t>>,
ArrayView<glm::vec<4, float>>,
ArrayView<glm::vec<4, double>>,
ArrayView<glm::mat<2, 2, int8_t>>,
ArrayView<glm::mat<2, 2, uint8_t>>,
ArrayView<glm::mat<2, 2, int16_t>>,
ArrayView<glm::mat<2, 2, uint16_t>>,
ArrayView<glm::mat<2, 2, int32_t>>,
ArrayView<glm::mat<2, 2, uint32_t>>,
ArrayView<glm::mat<2, 2, int64_t>>,
ArrayView<glm::mat<2, 2, uint64_t>>,
ArrayView<glm::mat<2, 2, float>>,
ArrayView<glm::mat<2, 2, double>>,
ArrayView<glm::mat<3, 3, int8_t>>,
ArrayView<glm::mat<3, 3, uint8_t>>,
ArrayView<glm::mat<3, 3, int16_t>>,
ArrayView<glm::mat<3, 3, uint16_t>>,
ArrayView<glm::mat<3, 3, int32_t>>,
ArrayView<glm::mat<3, 3, uint32_t>>,
ArrayView<glm::mat<3, 3, int64_t>>,
ArrayView<glm::mat<3, 3, uint64_t>>,
ArrayView<glm::mat<3, 3, float>>,
ArrayView<glm::mat<3, 3, double>>,
ArrayView<glm::mat<4, 4, int8_t>>,
ArrayView<glm::mat<4, 4, uint8_t>>,
ArrayView<glm::mat<4, 4, int16_t>>,
ArrayView<glm::mat<4, 4, uint16_t>>,
ArrayView<glm::mat<4, 4, int32_t>>,
ArrayView<glm::mat<4, 4, uint32_t>>,
ArrayView<glm::mat<4, 4, int64_t>>,
ArrayView<glm::mat<4, 4, uint64_t>>,
ArrayView<glm::mat<4, 4, float>>,
ArrayView<glm::mat<4, 4, double>>>;
#pragma endregion
public:
/**
* Constructs an empty metadata value with unknown type.
*/
FCesiumMetadataValue() : _value(swl::monostate{}), _valueType(), _storage() {}
/**
* Constructs a metadata value with the given input.
*
* @param Value The value to be stored in this struct.
*/
template <typename T>
explicit FCesiumMetadataValue(const T& Value)
: _value(Value), _valueType(), _storage() {
ECesiumMetadataType type;
ECesiumMetadataComponentType componentType;
bool isArray;
if constexpr (CesiumGltf::IsMetadataArray<T>::value) {
using ArrayType = typename CesiumGltf::MetadataArrayType<T>::type;
type =
ECesiumMetadataType(CesiumGltf::TypeToPropertyType<ArrayType>::value);
componentType = ECesiumMetadataComponentType(
CesiumGltf::TypeToPropertyType<ArrayType>::component);
isArray = true;
} else {
type = ECesiumMetadataType(CesiumGltf::TypeToPropertyType<T>::value);
componentType = ECesiumMetadataComponentType(
CesiumGltf::TypeToPropertyType<T>::component);
isArray = false;
}
_valueType = {type, componentType, isArray};
}
template <typename ArrayType>
explicit FCesiumMetadataValue(
const CesiumGltf::PropertyArrayCopy<ArrayType>& Copy)
: FCesiumMetadataValue(CesiumGltf::PropertyArrayCopy<ArrayType>(Copy)) {}
template <typename ArrayType>
explicit FCesiumMetadataValue(CesiumGltf::PropertyArrayCopy<ArrayType>&& Copy)
: _value(), _valueType(), _storage() {
this->_value = std::move(Copy).toViewAndExternalBuffer(this->_storage);
ECesiumMetadataType type =
ECesiumMetadataType(CesiumGltf::TypeToPropertyType<ArrayType>::value);
ECesiumMetadataComponentType componentType = ECesiumMetadataComponentType(
CesiumGltf::TypeToPropertyType<ArrayType>::component);
bool isArray = true;
this->_valueType = {type, componentType, isArray};
}
/**
* Constructs a metadata value with the given optional input.
*
* @param MaybeValue The optional value to be stored in this struct.
*/
template <typename T>
explicit FCesiumMetadataValue(const std::optional<T>& MaybeValue)
: _value(), _valueType(), _storage() {
if (!MaybeValue) {
return;
}
FCesiumMetadataValue temp(*MaybeValue);
this->_value = std::move(temp._value);
this->_valueType = std::move(temp._valueType);
this->_storage = std::move(temp._storage);
}
FCesiumMetadataValue(FCesiumMetadataValue&& rhs);
FCesiumMetadataValue& operator=(FCesiumMetadataValue&& rhs);
FCesiumMetadataValue(const FCesiumMetadataValue& rhs);
FCesiumMetadataValue& operator=(const FCesiumMetadataValue& rhs);
private:
ValueType _value;
FCesiumMetadataValueType _valueType;
std::vector<std::byte> _storage;
friend class UCesiumMetadataValueBlueprintLibrary;
};
UCLASS()
class CESIUMRUNTIME_API UCesiumMetadataValueBlueprintLibrary
: public UBlueprintFunctionLibrary {
GENERATED_BODY()
public:
/**
* Gets the best-fitting Blueprints type for this value. For the most precise
* representation of the value possible from Blueprints, you should retrieve
* it using this type.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static ECesiumMetadataBlueprintType
GetBlueprintType(UPARAM(ref) const FCesiumMetadataValue& Value);
/**
* Gets the best-fitting Blueprints type for the elements of this array value.
* If the given value is not of an array type, this returns None.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static ECesiumMetadataBlueprintType
GetArrayElementBlueprintType(UPARAM(ref) const FCesiumMetadataValue& Value);
/**
* Gets the type of the metadata value as defined in the
* EXT_structural_metadata extension. Many of these types are not accessible
* from Blueprints, but can be converted to a Blueprint-accessible type.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static FCesiumMetadataValueType
GetValueType(UPARAM(ref) const FCesiumMetadataValue& Value);
PRAGMA_DISABLE_DEPRECATION_WARNINGS
/**
* Gets true type of the value. Many of these types are not accessible
* from Blueprints, but can be converted to a Blueprint-accessible type.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Meta =
(DeprecatedFunction,
DeprecationMessage =
"CesiumMetadataTrueType is deprecated. Use GetValueType to get the CesiumMetadataValueType instead."))
static ECesiumMetadataTrueType_DEPRECATED
GetTrueType(UPARAM(ref) const FCesiumMetadataValue& Value);
/**
* Gets true type of the elements in the array. If this value is not an array,
* the component type will be None. Many of these types are not accessible
* from Blueprints, but can be converted to a Blueprint-accessible type.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Meta =
(DeprecatedFunction,
DeprecationMessage =
"CesiumMetadataTrueType is deprecated. Use GetValueType to get the CesiumMetadataValueType instead."))
static ECesiumMetadataTrueType_DEPRECATED
GetTrueComponentType(UPARAM(ref) const FCesiumMetadataValue& Value);
PRAGMA_ENABLE_DEPRECATION_WARNINGS
/**
* Attempts to retrieve the value as a boolean.
*
* If the value is a boolean, it is returned as-is.
*
* If the value is a scalar, zero is converted to false, while any other
* value is converted to true.
*
* If the value is a string, "0", "false", and "no" (case-insensitive) are
* converted to false, while "1", "true", and "yes" are converted to true.
* All other strings, including strings that can be converted to numbers,
* will return the default value.
*
* All other types return the default value.
*
* @param value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a Boolean.
* @return The value as a Boolean.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static bool
GetBoolean(UPARAM(ref) const FCesiumMetadataValue& value, bool DefaultValue);
/**
* Attempts to retrieve the value as an unsigned 8-bit integer.
*
* If the value is an integer between 0 and 255, it is returned
* as-is.
*
* If the value is a floating-point number in the aforementioned range, it is
* truncated (rounded toward zero) and returned.
*
* If the value is a boolean, 1 is returned for true and 0 for false.
*
* If the value is a string and the entire string can be parsed as an
* integer between 0 and 255, the parsed value is returned. The string is
* parsed in a locale-independent way and does not support the use of commas
* or other delimiters to group digits together.
*
* In all other cases, the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a Byte.
* @return The value as a Byte.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static uint8
GetByte(UPARAM(ref) const FCesiumMetadataValue& Value, uint8 DefaultValue);
/**
* Attempts to retrieve the value as a signed 32-bit integer.
*
* If the value is an integer between -2,147,483,648 and 2,147,483,647,
* it is returned as-is.
*
* If the value is a floating-point number in the aforementioned range, it is
* truncated (rounded toward zero) and returned;
*
* If the value is a boolean, 1 is returned for true and 0 for false.
*
* If the value is a string and the entire string can be parsed as an
* integer in the valid range, the parsed value is returned. If it can be
* parsed as a floating-point number, the parsed value is truncated (rounded
* toward zero). In either case, the string is parsed in a locale-independent
* way and does not support the use of commas or other delimiters to group
* digits together.
*
* In all other cases, the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to an Integer.
* @return The value as an Integer.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static int32
GetInteger(UPARAM(ref) const FCesiumMetadataValue& Value, int32 DefaultValue);
/**
* Attempts to retrieve the value as a signed 64-bit integer.
*
* If the value is an integer and between -2^63 and (2^63 - 1),
* it is returned as-is.
*
* If the value is a floating-point number in the aforementioned range, it
* is truncated (rounded toward zero) and returned;
*
* If the value is a boolean, 1 is returned for true and 0 for false.
*
* If the value is a string and the entire string can be parsed as an
* integer in the valid range, the parsed value is returned. If it can be
* parsed as a floating-point number, the parsed value is truncated (rounded
* toward zero). In either case, the string is parsed in a locale-independent
* way and does not support the use of commas or other delimiters to group
* digits together.
*
* In all other cases, the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to an Integer64.
* @return The value as an Integer64.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static int64 GetInteger64(
UPARAM(ref) const FCesiumMetadataValue& Value,
int64 DefaultValue);
/**
* Attempts to retrieve the value as a single-precision floating-point number.
*
* If the value is already a single-precision floating-point number, it is
* returned as-is.
*
* If the value is a scalar of any other type within the range of values that
* a single-precision float can represent, it is converted to its closest
* representation as a single-precision float and returned.
*
* If the value is a boolean, 1.0f is returned for true and 0.0f for false.
*
* If the value is a string, and the entire string can be parsed as a
* number, the parsed value is returned. The string is parsed in a
* locale-independent way and does not support the use of a comma or other
* delimiter to group digits togther.
*
* In all other cases, the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a Float.
* @return The value as a Float.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static float
GetFloat(UPARAM(ref) const FCesiumMetadataValue& Value, float DefaultValue);
/**
* Attempts to retrieve the value as a double-precision floating-point number.
*
* If the value is a single- or double-precision floating-point number, it is
* returned as-is.
*
* If the value is an integer, it is converted to the closest representable
* double-precision floating-point number.
*
* If the value is a boolean, 1.0 is returned for true and 0.0 for false.
*
* If the value is a string and the entire string can be parsed as a
* number, the parsed value is returned. The string is parsed in a
* locale-independent way and does not support the use of commas or other
* delimiters to group digits together.
*
* In all other cases, the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a Float64.
* @return The value as a Float64.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static double GetFloat64(
UPARAM(ref) const FCesiumMetadataValue& Value,
double DefaultValue);
/**
* Attempts to retrieve the value as a FIntPoint.
*
* If the value is a 2-dimensional vector, its components will be converted to
* 32-bit signed integers if possible.
*
* If the value is a 3- or 4-dimensional vector, it will use the first two
* components to construct the FIntPoint.
*
* If the value is a scalar that can be converted to a 32-bit signed integer,
* the resulting FIntPoint will have this value in both of its components.
*
* If the value is a boolean, (1, 1) is returned for true, while (0, 0) is
* returned for false.
*
* If the value is a string that can be parsed as a FIntPoint, the parsed
* value is returned. The string must be formatted as "X=... Y=...".
*
* In all other cases, the default value is returned. In all vector cases, if
* any of the relevant components cannot be represented as a 32-bit signed,
* the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a FIntPoint.
* @return The value as a FIntPoint.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static FIntPoint GetIntPoint(
UPARAM(ref) const FCesiumMetadataValue& Value,
const FIntPoint& DefaultValue);
/**
* Attempts to retrieve the value as a FVector2D.
*
* If the value is a 2-dimensional vector, its components will be converted to
* double-precision floating-point numbers.
*
* If the value is a 3- or 4-dimensional vector, it will use the first two
* components to construct the FVector2D.
*
* If the value is a scalar, the resulting FVector2D will have this value in
* both of its components.
*
* If the value is a boolean, (1.0, 1.0) is returned for true, while (0.0,
* 0.0) is returned for false.
*
* If the value is a string that can be parsed as a FVector2D, the parsed
* value is returned. The string must be formatted as "X=... Y=...".
*
* In all other cases, the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a FIntPoint.
* @return The value as a FIntPoint.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static FVector2D GetVector2D(
UPARAM(ref) const FCesiumMetadataValue& Value,
const FVector2D& DefaultValue);
/**
* Attempts to retrieve the value as a FIntVector.
*
* If the value is a 3-dimensional vector, its components will be converted to
* 32-bit signed integers if possible.
*
* If the value is a 4-dimensional vector, it will use the first three
* components to construct the FIntVector.
*
* If the value is a 2-dimensional vector, it will become the XY-components of
* the FIntVector. The Z component will be set to zero.
*
* If the value is a scalar that can be converted to a 32-bit signed integer,
* the resulting FIntVector will have this value in all of its components.
*
* If the value is a boolean, (1, 1, 1) is returned for true, while (0, 0, 0)
* is returned for false.
*
* If the value is a string that can be parsed as a FIntVector, the parsed
* value is returned. The string must be formatted as "X=... Y=... Z=".
*
* In all other cases, the default value is returned. In all vector cases, if
* any of the relevant components cannot be represented as a 32-bit signed
* integer, the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a FIntVector.
* @return The value as a FIntVector.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static FIntVector GetIntVector(
UPARAM(ref) const FCesiumMetadataValue& Value,
const FIntVector& DefaultValue);
/**
* Attempts to retrieve the value as a FVector3f.
*
* If the value is a 3-dimensional vector, its components will be converted to
* the closest representable single-precision floats, if possible.
*
* If the value is a 4-dimensional vector, a FVector3f containing the first
* three components will be returned.
*
* If the value is a 2-dimensional vector, it will become the XY-components of
* the FVector3f. The Z-component will be set to zero.
*
* If the value is a scalar that can be converted to a single-precision
* floating-point number, then the resulting FVector3f will have this value in
* all of its components.
*
* If the value is a boolean, (1.0f, 1.0f, 1.0f) is returned for true, while
* (0.0f, 0.0f, 0.0f) is returned for false.
*
* If the value is a string that can be parsed as a FVector3f, the parsed
* value is returned. The string must be formatted as "X=... Y=... Z=".
*
* In all other cases, the default value is returned. In all vector cases, if
* any of the relevant components cannot be represented as a single-precision
* float, the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a FVector3f.
* @return The value as a FVector3f.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static FVector3f GetVector3f(
UPARAM(ref) const FCesiumMetadataValue& Value,
const FVector3f& DefaultValue);
/**
* Attempts to retrieve the value as a FVector.
*
* If the value is a 3-dimensional vector, its components will be converted to
* double-precision floating-point numbers.
*
* If the value is a 4-dimensional vector, a FVector containing the first
* three components will be returned.
*
* If the value is a 2-dimensional vector, it will become the XY-components of
* the FVector. The Z-component will be set to zero.
*
* If the value is a scalar, then the resulting FVector will have this value
* as a double-precision floating-point number in all of its components.
*
* If the value is a boolean, (1.0, 1.0, 1.0) is returned for true, while
* (0.0, 0.0, 0.0) is returned for false.
*
* If the value is a string that can be parsed as a FVector, the parsed
* value is returned. The string must be formatted as "X=... Y=... Z=".
*
* In all other cases, the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a FVector.
* @return The value as a FVector.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static FVector GetVector(
UPARAM(ref) const FCesiumMetadataValue& Value,
const FVector& DefaultValue);
/**
* Attempts to retrieve the value as a FVector4.
*
* If the value is a 4-dimensional vector, its components will be converted to
* double-precision floating-point numbers.
*
* If the value is a 3-dimensional vector, it will become the XYZ-components
* of the FVector4. The W-component will be set to zero.
*
* If the value is a 2-dimensional vector, it will become the XY-components of
* the FVector4. The Z- and W-components will be set to zero.
*
* If the value is a scalar, then the resulting FVector4 will have this value
* as a double-precision floating-point number in all of its components.
*
* If the value is a boolean, (1.0, 1.0, 1.0, 1.0) is returned for true, while
* (0.0, 0.0, 0.0, 0.0) is returned for false.
*
* If the value is a string that can be parsed as a FVector4, the parsed
* value is returned. This follows the rules of FVector4::InitFromString. The
* string must be formatted as "X=... Y=... Z=... W=...". The W-component is
* optional; if absent, it will be set to 1.0.
*
* In all other cases, the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a FVector4.
* @return The value as a FVector4.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static FVector4 GetVector4(
UPARAM(ref) const FCesiumMetadataValue& Value,
const FVector4& DefaultValue);
/**
* Attempts to retrieve the value as a FMatrix.
*
* If the value is a 4-by-4 matrix, its components will be converted to
* double-precision floating-point numbers.
*
* If the value is a 3-by-3 matrix, it will initialize the corresponding
* entries of the FMatrix, while all other entries are set to zero. In other
* words, the 3-by-3 matrix is returned in an FMatrix where the fourth row and
* column are filled with zeroes.
*
* If the value is a 2-by-2 matrix, it will initialize the corresponding
* entries of the FMatrix, while all other entries are set to zero. In other
* words, the 2-by-2 matrix is returned in an FMatrix where the third and
* fourth rows / columns are filled with zeroes.
*
* If the value is a scalar, then the resulting FMatrix will have this value
* along its diagonal, including the very last component. All other entries
* will be zero.
*
* If the value is a boolean, it is converted to 1.0 for true and 0.0 for
* false. Then, the resulting FMatrix will have this value along its diagonal,
* including the very last component. All other entries will be zero.
*
* In all other cases, the default value is returned.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a FMatrix.
* @return The value as a FMatrix.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static FMatrix GetMatrix(
UPARAM(ref) const FCesiumMetadataValue& Value,
const FMatrix& DefaultValue);
/**
* Attempts to retrieve the value as a FString.
*
* String properties are returned as-is.
*
* Scalar values are converted to a string with `std::to_string`.
*
* Boolean properties are converted to "true" or "false".
*
* Vector properties are returned as strings in the format "X=... Y=... Z=...
* W=..." depending on how many components they have.
*
* Matrix properties are returned as strings row-by-row, where each row's
* values are printed between square brackets. For example, a 2-by-2 matrix
* will be printed out as "[A B] [C D]".
*
* Array properties return the default value.
*
* @param Value The metadata value to retrieve.
* @param DefaultValue The default value to use if the given value cannot
* be converted to a FString.
* @return The value as a FString.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static FString GetString(
UPARAM(ref) const FCesiumMetadataValue& Value,
const FString& DefaultValue);
/**
* Attempts to retrieve the value as a FCesiumPropertyArray. If the property
* is not an array type, this returns an empty array.
*
* @param Value The metadata value to retrieve.
* @return The value as a FCesiumPropertyArray.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static FCesiumPropertyArray GetArray(UPARAM(ref)
const FCesiumMetadataValue& Value);
/**
* Whether the value is empty, i.e., whether it does not actually represent
* any data. An empty value functions as a null value, and can be compared to
* a std::nullopt in C++. For example, when the raw value of a property
* matches the property's specified "no data" value, it will return an empty
* FCesiumMetadataValue.
*
* @param Value The metadata value to retrieve.
* @return Whether the value is empty.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static bool IsEmpty(UPARAM(ref) const FCesiumMetadataValue& Value);
/**
* Gets the given map of metadata values as a new map of strings, mapped by
* name. This is useful for displaying the values from a property table or
* property texture as strings in a user interface.
*
* Array properties cannot be converted to strings, so empty strings
* will be returned for their values.
*/
UFUNCTION(
BlueprintCallable,
BlueprintPure,
Category = "Cesium|Metadata|Value")
static TMap<FString, FString>
GetValuesAsStrings(const TMap<FString, FCesiumMetadataValue>& Values);
};