HumanRender/human_render/Ipc/libipc/memory/wrapper.h
2024-12-22 23:24:02 +08:00

328 lines
9.4 KiB
C++

#pragma once
#include <tuple>
#include <thread>
#include <deque> // std::deque
#include <functional> // std::function
#include <utility> // std::forward
#include <cstddef>
#include <cassert> // assert
#include <type_traits> // std::aligned_storage_t
#include "libipc/def.h"
#include "libipc/rw_lock.h"
#include "libipc/pool_alloc.h"
#include "libipc/utility/concept.h"
#include "libipc/memory/alloc.h"
#include "libipc/platform/detail.h"
namespace ipc {
namespace mem {
////////////////////////////////////////////////////////////////
/// Thread-safe allocation wrapper
////////////////////////////////////////////////////////////////
namespace detail {
IPC_CONCEPT_(is_comparable, operator<(std::declval<Type>()));
} // namespace detail
template <typename AllocP, bool = detail::is_comparable<AllocP>::value>
class limited_recycler;
template <typename AllocP>
class limited_recycler<AllocP, true> {
public:
using alloc_policy = AllocP;
protected:
std::deque<alloc_policy> master_allocs_;
ipc::spin_lock master_lock_;
template <typename F>
void take_first_do(F && pred) {
auto it = master_allocs_.begin();
pred(const_cast<alloc_policy&>(*it));
master_allocs_.erase(it);
}
public:
void try_recover(alloc_policy & alc) {
IPC_UNUSED_ auto guard = ipc::detail::unique_lock(master_lock_);
if (master_allocs_.empty()) return;
take_first_do([&alc](alloc_policy & first) { alc.swap(first); });
}
void collect(alloc_policy && alc) {
IPC_UNUSED_ auto guard = ipc::detail::unique_lock(master_lock_);
if (master_allocs_.size() >= 32) {
take_first_do([](alloc_policy &) {}); // erase first
}
master_allocs_.emplace_back(std::move(alc));
}
IPC_CONSTEXPR_ auto try_replenish(alloc_policy&, std::size_t) noexcept {}
};
template <typename AllocP>
class default_recycler : public limited_recycler<AllocP> {
IPC_CONCEPT_(has_remain, remain());
IPC_CONCEPT_(has_empty , empty());
template <typename A>
void try_fill(A & alc) {
IPC_UNUSED_ auto guard = ipc::detail::unique_lock(this->master_lock_);
if (this->master_allocs_.empty()) return;
this->take_first_do([&alc](alloc_policy & first) { alc.take(std::move(first)); });
}
public:
using alloc_policy = typename limited_recycler<AllocP>::alloc_policy;
template <typename A = AllocP>
auto try_replenish(alloc_policy & alc, std::size_t size)
-> ipc::require<detail::has_take<A>::value && has_remain<A>::value> {
if (alc.remain() >= size) return;
this->try_fill(alc);
}
template <typename A = AllocP>
auto try_replenish(alloc_policy & alc, std::size_t /*size*/)
-> ipc::require<detail::has_take<A>::value && !has_remain<A>::value && has_empty<A>::value> {
if (!alc.empty()) return;
this->try_fill(alc);
}
template <typename A = AllocP>
auto try_replenish(alloc_policy & alc, std::size_t /*size*/)
-> ipc::require<!detail::has_take<A>::value && has_empty<A>::value> {
if (!alc.empty()) return;
this->try_recover(alc);
}
template <typename A = AllocP>
IPC_CONSTEXPR_ auto try_replenish(alloc_policy & /*alc*/, std::size_t /*size*/) noexcept
-> ipc::require<(!detail::has_take<A>::value || !has_remain<A>::value) && !has_empty<A>::value> {
// Do Nothing.
}
};
template <typename AllocP>
class empty_recycler {
public:
using alloc_policy = AllocP;
IPC_CONSTEXPR_ void try_recover(alloc_policy&) noexcept {}
IPC_CONSTEXPR_ auto try_replenish(alloc_policy&, std::size_t) noexcept {}
IPC_CONSTEXPR_ void collect(alloc_policy&&) noexcept {}
};
template <typename AllocP,
template <typename> class RecyclerP = default_recycler>
class async_wrapper {
public:
using alloc_policy = AllocP;
private:
RecyclerP<alloc_policy> recycler_;
class alloc_proxy : public AllocP {
async_wrapper * w_ = nullptr;
public:
alloc_proxy(alloc_proxy && rhs) = default;
template <typename ... P>
alloc_proxy(async_wrapper* w, P && ... pars)
: AllocP(std::forward<P>(pars) ...), w_(w) {
assert(w_ != nullptr);
w_->recycler_.try_recover(*this);
}
~alloc_proxy() {
w_->recycler_.collect(std::move(*this));
}
auto alloc(std::size_t size) {
w_->recycler_.try_replenish(*this, size);
return AllocP::alloc(size);
}
};
friend class alloc_proxy;
using ref_t = alloc_proxy&;
std::function<ref_t()> get_alloc_;
public:
template <typename ... P>
async_wrapper(P ... pars) {
get_alloc_ = [this, pars ...]()->ref_t {
thread_local alloc_proxy tls(pars ...);
return tls;
};
}
void* alloc(std::size_t size) {
return get_alloc_().alloc(size);
}
void free(void* p, std::size_t size) {
get_alloc_().free(p, size);
}
};
////////////////////////////////////////////////////////////////
/// Thread-safe allocation wrapper (with spin_lock)
////////////////////////////////////////////////////////////////
template <typename AllocP, typename MutexT = ipc::spin_lock>
class sync_wrapper {
public:
using alloc_policy = AllocP;
using mutex_type = MutexT;
private:
mutex_type lock_;
alloc_policy alloc_;
public:
template <typename ... P>
sync_wrapper(P && ... pars)
: alloc_(std::forward<P>(pars) ...)
{}
void swap(sync_wrapper& rhs) {
IPC_UNUSED_ auto guard = ipc::detail::unique_lock(lock_);
alloc_.swap(rhs.alloc_);
}
void* alloc(std::size_t size) {
IPC_UNUSED_ auto guard = ipc::detail::unique_lock(lock_);
return alloc_.alloc(size);
}
void free(void* p, std::size_t size) {
IPC_UNUSED_ auto guard = ipc::detail::unique_lock(lock_);
alloc_.free(p, size);
}
};
////////////////////////////////////////////////////////////////
/// Variable memory allocation wrapper
////////////////////////////////////////////////////////////////
template <std::size_t BaseSize = 0, std::size_t IterSize = sizeof(void*)>
struct default_mapping_policy {
enum : std::size_t {
base_size = BaseSize,
iter_size = IterSize,
classes_size = 64
};
template <typename F, typename ... P>
IPC_CONSTEXPR_ static void foreach(F && f, P && ... params) {
for (std::size_t i = 0; i < classes_size; ++i) {
f(i, std::forward<P>(params)...);
}
}
IPC_CONSTEXPR_ static std::size_t block_size(std::size_t id) noexcept {
return (id < classes_size) ? (base_size + (id + 1) * iter_size) : 0;
}
template <typename F, typename D, typename ... P>
IPC_CONSTEXPR_ static auto classify(F && f, D && d, std::size_t size, P && ... params) {
std::size_t id = (size - base_size - 1) / iter_size;
return (id < classes_size) ?
f(id, size, std::forward<P>(params)...) :
d(size, std::forward<P>(params)...);
}
};
template <typename FixedAlloc,
typename DefaultAlloc = mem::static_alloc,
typename MappingP = default_mapping_policy<>>
class variable_wrapper {
struct initiator {
using falc_t = std::aligned_storage_t<sizeof(FixedAlloc), alignof(FixedAlloc)>;
falc_t arr_[MappingP::classes_size];
initiator() {
MappingP::foreach([](std::size_t id, falc_t * a) {
ipc::mem::construct(&initiator::at(a, id), MappingP::block_size(id));
}, arr_);
}
~initiator() {
MappingP::foreach([](std::size_t id, falc_t * a) {
ipc::mem::destruct(&initiator::at(a, id));
}, arr_);
}
static FixedAlloc & at(falc_t * arr, std::size_t id) noexcept {
return reinterpret_cast<FixedAlloc&>(arr[id]);
}
} init_;
using falc_t = typename initiator::falc_t;
public:
void swap(variable_wrapper & other) {
MappingP::foreach([](std::size_t id, falc_t * in, falc_t * ot) {
initiator::at(in, id).swap(initiator::at(ot, id));
}, init_.arr_, other.init_.arr_);
}
void* alloc(std::size_t size) {
return MappingP::classify([](std::size_t id, std::size_t size, falc_t * a) {
return initiator::at(a, id).alloc(size);
}, [](std::size_t size, falc_t *) {
return DefaultAlloc::alloc(size);
}, size, init_.arr_);
}
void free(void* p, std::size_t size) {
MappingP::classify([](std::size_t id, std::size_t size, void* p, falc_t * a) {
initiator::at(a, id).free(p, size);
}, [](std::size_t size, void* p, falc_t *) {
DefaultAlloc::free(p, size);
}, size, p, init_.arr_);
}
};
////////////////////////////////////////////////////////////////
/// Static allocation wrapper
////////////////////////////////////////////////////////////////
template <typename AllocP>
class static_wrapper {
public:
using alloc_policy = AllocP;
static alloc_policy& instance() {
static alloc_policy alloc;
return alloc;
}
static void swap(static_wrapper&) {}
static void* alloc(std::size_t size) {
return instance().alloc(size);
}
static void free(void* p, std::size_t size) {
instance().free(p, size);
}
};
} // namespace mem
} // namespace ipc