human/infer.py

280 lines
9.7 KiB
Python
Raw Normal View History

2024-09-26 17:34:52 +00:00
#encoding = utf8
import queue
2024-09-28 18:47:04 +00:00
import time
2024-09-26 17:34:52 +00:00
from queue import Queue
from threading import Thread, Event
import logging
import cv2
import numpy as np
import torch
from tqdm import tqdm
import face_detection
from models import Wav2Lip
2024-10-03 17:52:49 +00:00
from utils import mirror_index
2024-09-26 17:34:52 +00:00
logger = logging.getLogger(__name__)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def read_images(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
print(f'read image path:{img_path}')
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def _load(checkpoint_path):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
logging.info(f'Load checkpoint from {path}')
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(device)
return model.eval()
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images):
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
batch_size = 16
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError(
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = [0, 10, 0, 0]
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
img_size = 96
wav2lip_batch_size = 128
def datagen_signal(frame, mel, face_det_results):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
# for i, m in enumerate(mels):
idx = 0
frame_to_save = frame.copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
m = mel
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size // 2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
return img_batch, mel_batch, frame_batch, coords_batch
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
return img_batch, mel_batch, frame_batch, coords_batch
class Infer:
def __init__(self, human):
self._human = human
2024-10-03 17:52:49 +00:00
self._feat_queue = Queue()
self._audio_out_queue = Queue()
2024-09-26 17:34:52 +00:00
self._exit_event = Event()
self._run_thread = Thread(target=self.__on_run)
self._exit_event.set()
self._run_thread.start()
def __on_run(self):
model = load_model(r'.\checkpoints\wav2lip.pth')
print("Model loaded")
2024-10-03 17:52:49 +00:00
face_list_cycle = self._human.get_face_list_cycle()
# self.__do_run1(face_list_cycle, model)
self.__do_run2(face_list_cycle, model)
2024-09-26 17:34:52 +00:00
# frame_h, frame_w = face_list_cycle[0].shape[:-1]
2024-10-03 17:52:49 +00:00
def __do_run1(self, face_list_cycle, model):
2024-09-26 17:34:52 +00:00
face_det_results = face_detect(face_list_cycle)
j = 0
2024-09-28 18:47:04 +00:00
count = 0
2024-09-26 17:34:52 +00:00
while self._exit_event.is_set():
try:
2024-10-03 17:52:49 +00:00
m = self._feat_queue.get(block=True, timeout=1)
2024-09-26 17:34:52 +00:00
except queue.Empty:
continue
img_batch, mel_batch, frames, coords = datagen_signal(face_list_cycle[0], m, face_det_results)
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
2024-09-28 18:47:04 +00:00
time.sleep(0.01)
2024-09-26 17:34:52 +00:00
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = p
2024-09-28 18:47:04 +00:00
# name = "%04d" % j
2024-09-27 11:31:36 +00:00
cv2.imwrite(f'temp/images/{j}.jpg', p)
j = j + 1
2024-09-28 18:47:04 +00:00
# count = count + 1
2024-09-26 17:34:52 +00:00
p = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
self._human.push_render_image(p)
# out.write(f)
2024-09-28 18:47:04 +00:00
# print('infer count:', count)
2024-09-26 17:34:52 +00:00
2024-10-03 17:52:49 +00:00
def __do_run2(self, face_list_cycle, model):
length = len(face_list_cycle)
index = 0
count = 0
count_time = 0
print('start inference')
while True:
if self._exit_event.is_set():
start_time = time.perf_counter()
try:
mel_batch = self._feat_queue.get(block=True, timeout=1)
except queue.Empty:
continue
is_all_silence = True
audio_frames = []
for _ in range(self._human.get_batch_size() * 2):
frame, type_ = self._audio_out_queue.get()
audio_frames.append((frame, type_))
if type_ == 0:
is_all_silence = False
if is_all_silence:
for i in range(self._human.get_batch_size()):
# res_frame_queue.put((None, mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
self._human.push_res_frame(None, mirror_index(length, index), audio_frames[i * 2:i * 2 + 2])
index = index + 1
else:
print('infer=======')
t = time.perf_counter()
img_batch = []
for i in range(self._human.get_batch_size()):
idx = mirror_index(length, index + i)
face = face_list_cycle[idx]
img_batch.append(face)
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, face.shape[0] // 2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
count_time += (time.perf_counter() - t)
count += self._human.batch_size()
# _totalframe += 1
if count >= 100:
print(f"------actual avg infer fps:{count / count_time:.4f}")
count = 0
count_time = 0
for i, res_frame in enumerate(pred):
# self.__pushmedia(res_frame,loop,audio_track,video_track)
# res_frame_queue.put(
# (res_frame, __mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
self._human.push_res_frame(res_frame, mirror_index(length, index),
audio_frames[i * 2:i * 2 + 2])
index = index + 1
# print('total batch time:',time.perf_counter()-start_time)
else:
time.sleep(1)
print('musereal inference processor stop')
def push(self, mel_chunks):
self._feat_queue.put(mel_chunks)
def push_out_queue(self, frame, type_):
self._audio_out_queue.put((frame, type_))