306 lines
9.0 KiB
Python
306 lines
9.0 KiB
Python
|
from os import listdir, path
|
||
|
import numpy as np
|
||
|
import scipy, cv2, os, sys, argparse
|
||
|
import dlib, json, subprocess
|
||
|
from tqdm import tqdm
|
||
|
from glob import glob
|
||
|
import torch
|
||
|
|
||
|
sys.path.append('../')
|
||
|
import audio
|
||
|
import face_detection
|
||
|
from models import Wav2Lip
|
||
|
|
||
|
parser = argparse.ArgumentParser(description='Code to generate results on ReSyncED evaluation set')
|
||
|
|
||
|
parser.add_argument('--mode', type=str,
|
||
|
help='random | dubbed | tts', required=True)
|
||
|
|
||
|
parser.add_argument('--filelist', type=str,
|
||
|
help='Filepath of filelist file to read', default=None)
|
||
|
|
||
|
parser.add_argument('--results_dir', type=str, help='Folder to save all results into',
|
||
|
required=True)
|
||
|
parser.add_argument('--data_root', type=str, required=True)
|
||
|
parser.add_argument('--checkpoint_path', type=str,
|
||
|
help='Name of saved checkpoint to load weights from', required=True)
|
||
|
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0],
|
||
|
help='Padding (top, bottom, left, right)')
|
||
|
|
||
|
parser.add_argument('--face_det_batch_size', type=int,
|
||
|
help='Single GPU batch size for face detection', default=16)
|
||
|
|
||
|
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip', default=128)
|
||
|
parser.add_argument('--face_res', help='Approximate resolution of the face at which to test', default=180)
|
||
|
parser.add_argument('--min_frame_res', help='Do not downsample further below this frame resolution', default=480)
|
||
|
parser.add_argument('--max_frame_res', help='Downsample to at least this frame resolution', default=720)
|
||
|
# parser.add_argument('--resize_factor', default=1, type=int)
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
args.img_size = 96
|
||
|
|
||
|
def get_smoothened_boxes(boxes, T):
|
||
|
for i in range(len(boxes)):
|
||
|
if i + T > len(boxes):
|
||
|
window = boxes[len(boxes) - T:]
|
||
|
else:
|
||
|
window = boxes[i : i + T]
|
||
|
boxes[i] = np.mean(window, axis=0)
|
||
|
return boxes
|
||
|
|
||
|
def rescale_frames(images):
|
||
|
rect = detector.get_detections_for_batch(np.array([images[0]]))[0]
|
||
|
if rect is None:
|
||
|
raise ValueError('Face not detected!')
|
||
|
h, w = images[0].shape[:-1]
|
||
|
|
||
|
x1, y1, x2, y2 = rect
|
||
|
|
||
|
face_size = max(np.abs(y1 - y2), np.abs(x1 - x2))
|
||
|
|
||
|
diff = np.abs(face_size - args.face_res)
|
||
|
for factor in range(2, 16):
|
||
|
downsampled_res = face_size // factor
|
||
|
if min(h//factor, w//factor) < args.min_frame_res: break
|
||
|
if np.abs(downsampled_res - args.face_res) >= diff: break
|
||
|
|
||
|
factor -= 1
|
||
|
if factor == 1: return images
|
||
|
|
||
|
return [cv2.resize(im, (im.shape[1]//(factor), im.shape[0]//(factor))) for im in images]
|
||
|
|
||
|
|
||
|
def face_detect(images):
|
||
|
batch_size = args.face_det_batch_size
|
||
|
images = rescale_frames(images)
|
||
|
|
||
|
while 1:
|
||
|
predictions = []
|
||
|
try:
|
||
|
for i in range(0, len(images), batch_size):
|
||
|
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
||
|
except RuntimeError:
|
||
|
if batch_size == 1:
|
||
|
raise RuntimeError('Image too big to run face detection on GPU')
|
||
|
batch_size //= 2
|
||
|
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
|
||
|
continue
|
||
|
break
|
||
|
|
||
|
results = []
|
||
|
pady1, pady2, padx1, padx2 = args.pads
|
||
|
for rect, image in zip(predictions, images):
|
||
|
if rect is None:
|
||
|
raise ValueError('Face not detected!')
|
||
|
|
||
|
y1 = max(0, rect[1] - pady1)
|
||
|
y2 = min(image.shape[0], rect[3] + pady2)
|
||
|
x1 = max(0, rect[0] - padx1)
|
||
|
x2 = min(image.shape[1], rect[2] + padx2)
|
||
|
|
||
|
results.append([x1, y1, x2, y2])
|
||
|
|
||
|
boxes = get_smoothened_boxes(np.array(results), T=5)
|
||
|
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
||
|
|
||
|
return results, images
|
||
|
|
||
|
def datagen(frames, face_det_results, mels):
|
||
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
||
|
|
||
|
for i, m in enumerate(mels):
|
||
|
if i >= len(frames): raise ValueError('Equal or less lengths only')
|
||
|
|
||
|
frame_to_save = frames[i].copy()
|
||
|
face, coords, valid_frame = face_det_results[i].copy()
|
||
|
if not valid_frame:
|
||
|
continue
|
||
|
|
||
|
face = cv2.resize(face, (args.img_size, args.img_size))
|
||
|
|
||
|
img_batch.append(face)
|
||
|
mel_batch.append(m)
|
||
|
frame_batch.append(frame_to_save)
|
||
|
coords_batch.append(coords)
|
||
|
|
||
|
if len(img_batch) >= args.wav2lip_batch_size:
|
||
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
||
|
|
||
|
img_masked = img_batch.copy()
|
||
|
img_masked[:, args.img_size//2:] = 0
|
||
|
|
||
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
||
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
||
|
|
||
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
||
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
||
|
|
||
|
if len(img_batch) > 0:
|
||
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
||
|
|
||
|
img_masked = img_batch.copy()
|
||
|
img_masked[:, args.img_size//2:] = 0
|
||
|
|
||
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
||
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
||
|
|
||
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
||
|
|
||
|
def increase_frames(frames, l):
|
||
|
## evenly duplicating frames to increase length of video
|
||
|
while len(frames) < l:
|
||
|
dup_every = float(l) / len(frames)
|
||
|
|
||
|
final_frames = []
|
||
|
next_duplicate = 0.
|
||
|
|
||
|
for i, f in enumerate(frames):
|
||
|
final_frames.append(f)
|
||
|
|
||
|
if int(np.ceil(next_duplicate)) == i:
|
||
|
final_frames.append(f)
|
||
|
|
||
|
next_duplicate += dup_every
|
||
|
|
||
|
frames = final_frames
|
||
|
|
||
|
return frames[:l]
|
||
|
|
||
|
mel_step_size = 16
|
||
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||
|
print('Using {} for inference.'.format(device))
|
||
|
|
||
|
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
||
|
flip_input=False, device=device)
|
||
|
|
||
|
def _load(checkpoint_path):
|
||
|
if device == 'cuda':
|
||
|
checkpoint = torch.load(checkpoint_path)
|
||
|
else:
|
||
|
checkpoint = torch.load(checkpoint_path,
|
||
|
map_location=lambda storage, loc: storage)
|
||
|
return checkpoint
|
||
|
|
||
|
def load_model(path):
|
||
|
model = Wav2Lip()
|
||
|
print("Load checkpoint from: {}".format(path))
|
||
|
checkpoint = _load(path)
|
||
|
s = checkpoint["state_dict"]
|
||
|
new_s = {}
|
||
|
for k, v in s.items():
|
||
|
new_s[k.replace('module.', '')] = v
|
||
|
model.load_state_dict(new_s)
|
||
|
|
||
|
model = model.to(device)
|
||
|
return model.eval()
|
||
|
|
||
|
model = load_model(args.checkpoint_path)
|
||
|
|
||
|
def main():
|
||
|
if not os.path.isdir(args.results_dir): os.makedirs(args.results_dir)
|
||
|
|
||
|
if args.mode == 'dubbed':
|
||
|
files = listdir(args.data_root)
|
||
|
lines = ['{} {}'.format(f, f) for f in files]
|
||
|
|
||
|
else:
|
||
|
assert args.filelist is not None
|
||
|
with open(args.filelist, 'r') as filelist:
|
||
|
lines = filelist.readlines()
|
||
|
|
||
|
for idx, line in enumerate(tqdm(lines)):
|
||
|
video, audio_src = line.strip().split()
|
||
|
|
||
|
audio_src = os.path.join(args.data_root, audio_src)
|
||
|
video = os.path.join(args.data_root, video)
|
||
|
|
||
|
command = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'.format(audio_src, '../temp/temp.wav')
|
||
|
subprocess.call(command, shell=True)
|
||
|
temp_audio = '../temp/temp.wav'
|
||
|
|
||
|
wav = audio.load_wav(temp_audio, 16000)
|
||
|
mel = audio.melspectrogram(wav)
|
||
|
|
||
|
if np.isnan(mel.reshape(-1)).sum() > 0:
|
||
|
raise ValueError('Mel contains nan!')
|
||
|
|
||
|
video_stream = cv2.VideoCapture(video)
|
||
|
|
||
|
fps = video_stream.get(cv2.CAP_PROP_FPS)
|
||
|
mel_idx_multiplier = 80./fps
|
||
|
|
||
|
full_frames = []
|
||
|
while 1:
|
||
|
still_reading, frame = video_stream.read()
|
||
|
if not still_reading:
|
||
|
video_stream.release()
|
||
|
break
|
||
|
|
||
|
if min(frame.shape[:-1]) > args.max_frame_res:
|
||
|
h, w = frame.shape[:-1]
|
||
|
scale_factor = min(h, w) / float(args.max_frame_res)
|
||
|
h = int(h/scale_factor)
|
||
|
w = int(w/scale_factor)
|
||
|
|
||
|
frame = cv2.resize(frame, (w, h))
|
||
|
full_frames.append(frame)
|
||
|
|
||
|
mel_chunks = []
|
||
|
i = 0
|
||
|
while 1:
|
||
|
start_idx = int(i * mel_idx_multiplier)
|
||
|
if start_idx + mel_step_size > len(mel[0]):
|
||
|
break
|
||
|
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
|
||
|
i += 1
|
||
|
|
||
|
if len(full_frames) < len(mel_chunks):
|
||
|
if args.mode == 'tts':
|
||
|
full_frames = increase_frames(full_frames, len(mel_chunks))
|
||
|
else:
|
||
|
raise ValueError('#Frames, audio length mismatch')
|
||
|
|
||
|
else:
|
||
|
full_frames = full_frames[:len(mel_chunks)]
|
||
|
|
||
|
try:
|
||
|
face_det_results, full_frames = face_detect(full_frames.copy())
|
||
|
except ValueError as e:
|
||
|
continue
|
||
|
|
||
|
batch_size = args.wav2lip_batch_size
|
||
|
gen = datagen(full_frames.copy(), face_det_results, mel_chunks)
|
||
|
|
||
|
for i, (img_batch, mel_batch, frames, coords) in enumerate(gen):
|
||
|
if i == 0:
|
||
|
frame_h, frame_w = full_frames[0].shape[:-1]
|
||
|
|
||
|
out = cv2.VideoWriter('../temp/result.avi',
|
||
|
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
|
||
|
|
||
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
||
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
pred = model(mel_batch, img_batch)
|
||
|
|
||
|
|
||
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
||
|
|
||
|
for pl, f, c in zip(pred, frames, coords):
|
||
|
y1, y2, x1, x2 = c
|
||
|
pl = cv2.resize(pl.astype(np.uint8), (x2 - x1, y2 - y1))
|
||
|
f[y1:y2, x1:x2] = pl
|
||
|
out.write(f)
|
||
|
|
||
|
out.release()
|
||
|
|
||
|
vid = os.path.join(args.results_dir, '{}.mp4'.format(idx))
|
||
|
command = 'ffmpeg -loglevel panic -y -i {} -i {} -strict -2 -q:v 1 {}'.format('../temp/temp.wav',
|
||
|
'../temp/result.avi', vid)
|
||
|
subprocess.call(command, shell=True)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|