human/render/video_render.py

61 lines
2.1 KiB
Python
Raw Normal View History

2024-10-12 11:57:24 +00:00
#encoding = utf8
2024-10-22 11:57:30 +00:00
import copy
2024-10-23 09:44:33 +00:00
import time
2024-10-22 11:57:30 +00:00
from queue import Empty
2024-10-25 00:23:55 +00:00
from enum import Enum
2024-10-22 11:57:30 +00:00
import cv2
import numpy as np
2024-10-23 09:44:33 +00:00
from .base_render import BaseRender
2024-10-25 00:23:55 +00:00
from human.message_type import MessageType
2024-10-12 11:57:24 +00:00
2024-10-22 11:57:30 +00:00
class VideoRender(BaseRender):
def __init__(self, play_clock, context, human_render):
2024-10-25 00:23:55 +00:00
super().__init__(play_clock, context, 'Video')
2024-10-22 11:57:30 +00:00
self._human_render = human_render
2024-10-23 09:44:33 +00:00
def _run_step(self):
2024-10-25 00:23:55 +00:00
while self._exit_event.is_set():
2024-10-22 11:57:30 +00:00
try:
2024-10-25 00:23:55 +00:00
frame, ps = self._queue.get(block=True, timeout=0.01)
res_frame, idx, type_ = frame
except Empty:
2024-10-22 11:57:30 +00:00
return
2024-10-25 00:23:55 +00:00
clock_time = self._play_clock.clock_time()
time_difference = clock_time - ps
2024-10-23 09:44:33 +00:00
2024-10-25 00:23:55 +00:00
print('video render:', ps, ' ', clock_time, ' ', time_difference)
if time_difference < -self._play_clock.audio_diff_threshold:
sleep_time = abs(time_difference + self._play_clock.audio_diff_threshold)
print("Video frame waiting to catch up with audio", sleep_time)
if sleep_time > 0:
time.sleep(sleep_time)
2024-10-23 09:44:33 +00:00
2024-10-25 00:23:55 +00:00
elif time_difference > self._play_clock.audio_diff_threshold: # 视频比音频快超过10ms
print("Video frame dropped to catch up with audio")
continue
2024-10-22 11:57:30 +00:00
2024-10-25 00:23:55 +00:00
print('get face', self._queue.qsize())
2024-10-22 11:57:30 +00:00
2024-10-25 00:23:55 +00:00
if type_ == 0:
combine_frame = self._context.frame_list_cycle[idx]
else:
bbox = self._context.coord_list_cycle[idx]
combine_frame = copy.deepcopy(self._context.frame_list_cycle[idx])
y1, y2, x1, x2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1))
except:
print('resize error')
return
combine_frame[y1:y2, x1:x2] = res_frame
image = combine_frame
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if self._human_render is not None:
self._human_render.put_image(image)
return