human/utils/utils.py

198 lines
6.0 KiB
Python
Raw Normal View History

2024-10-14 23:58:22 +00:00
#encoding = utf8
import logging
import os
import cv2
import numpy as np
import torch
from tqdm import tqdm
import face_detection
from models import Wav2Lip
logger = logging.getLogger(__name__)
2024-10-14 23:58:22 +00:00
def mirror_index(size, index):
# size = len(self.coord_list_cycle)
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1
def read_images(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
print(f'read image path:{img_path}')
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def read_files_path(path):
file_paths = []
files = os.listdir(path)
for file in files:
2024-10-23 09:44:33 +00:00
if not os.path.isdir(file) and file.endswith('.png') or file.endswith('.jpg'):
2024-10-17 15:26:21 +00:00
file_paths.append(os.path.join(path, file))
return file_paths
def get_smoothened_boxes(boxes, t):
for i in range(len(boxes)):
if i + t > len(boxes):
window = boxes[len(boxes) - t:]
else:
window = boxes[i: i + t]
boxes[i] = np.mean(window, axis=0)
return boxes
def datagen_signal(frame, mel, face_det_results, img_size, wav2lip_batch_size=128):
img_batch, mel_batch, frame_batch, coord_batch = [], [], [], []
idx = 0
frame_to_save = frame.copy()
face, coord = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
for i, m in enumerate(mel):
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coord_batch.append(coord)
if len(img_batch) >= wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size // 2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
return img_batch, mel_batch, frame_batch, coord_batch
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
return img_batch, mel_batch, frame_batch, coord_batch
def face_detect(images, device):
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
batch_size = 16
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError(
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pad_y1, pad_y2, pad_x1, pad_x2 = [0, 10, 0, 0]
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pad_y1)
y2 = min(image.shape[0], rect[3] + pad_y2)
x1 = max(0, rect[0] - pad_x1)
x2 = min(image.shape[1], rect[2] + pad_x2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not False:
boxes = get_smoothened_boxes(boxes, t=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
def get_device():
return 'cuda' if torch.cuda.is_available() else 'cpu'
def _load(checkpoint_path):
device = get_device
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
logging.info(f'Load checkpoint from {path}')
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
device = get_device()
model = model.to(device)
return model.eval()
def load_avatar(path, img_size, device):
2024-10-17 15:26:21 +00:00
print(f'load avatar:{path}')
face_images_path = path
face_images_path = read_files_path(face_images_path)
full_list_cycle = read_images(face_images_path)
face_det_results = face_detect(full_list_cycle, device)
face_frames = []
coord_frames = []
for face, coord in face_det_results:
resized_crop_frame = cv2.resize(face, (img_size, img_size))
face_frames.append(resized_crop_frame)
coord_frames.append(coord)
return full_list_cycle, face_frames, coord_frames
2024-10-17 15:26:21 +00:00
2024-10-23 09:44:33 +00:00
def config_logging(file_name: str, console_level: int = logging.INFO, file_level: int = logging.DEBUG):
2024-10-17 15:26:21 +00:00
file_handler = logging.FileHandler(file_name, mode='a', encoding="utf8")
file_handler.setFormatter(logging.Formatter(
'%(asctime)s [%(levelname)s] %(module)s.%(lineno)d %(name)s:\t%(message)s'
))
file_handler.setLevel(file_level)
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter(
'[%(asctime)s %(levelname)s] %(message)s',
datefmt="%Y/%m/%d %H:%M:%S"
))
console_handler.setLevel(console_level)
logging.basicConfig(
level=min(console_level, file_level),
handlers=[file_handler, console_handler],
)