add test code
This commit is contained in:
parent
4e1e923c0b
commit
17d9437425
166
Human.py
166
Human.py
@ -7,12 +7,15 @@ import time
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
import audio
|
||||||
|
import face_detection
|
||||||
import utils
|
import utils
|
||||||
from models import Wav2Lip
|
from models import Wav2Lip
|
||||||
from tts.Chunk2Mal import Chunk2Mal
|
from tts.Chunk2Mal import Chunk2Mal
|
||||||
import torch
|
import torch
|
||||||
import cv2
|
import cv2
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
from queue import Queue
|
||||||
|
|
||||||
from tts.EdgeTTS import EdgeTTS
|
from tts.EdgeTTS import EdgeTTS
|
||||||
from tts.TTSBase import TTSBase
|
from tts.TTSBase import TTSBase
|
||||||
@ -140,9 +143,107 @@ def inference(render_event, batch_size, face_images_path, audio_feat_queue, audi
|
|||||||
logging.info('finish inference')
|
logging.info('finish inference')
|
||||||
|
|
||||||
|
|
||||||
|
def get_smoothened_boxes(boxes, T):
|
||||||
|
for i in range(len(boxes)):
|
||||||
|
if i + T > len(boxes):
|
||||||
|
window = boxes[len(boxes) - T:]
|
||||||
|
else:
|
||||||
|
window = boxes[i : i + T]
|
||||||
|
boxes[i] = np.mean(window, axis=0)
|
||||||
|
return boxes
|
||||||
|
|
||||||
|
|
||||||
|
def face_detect(images):
|
||||||
|
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
||||||
|
flip_input=False, device=device)
|
||||||
|
|
||||||
|
batch_size = 16
|
||||||
|
|
||||||
|
while 1:
|
||||||
|
predictions = []
|
||||||
|
try:
|
||||||
|
for i in tqdm(range(0, len(images), batch_size)):
|
||||||
|
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
||||||
|
except RuntimeError:
|
||||||
|
if batch_size == 1:
|
||||||
|
raise RuntimeError(
|
||||||
|
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
|
||||||
|
batch_size //= 2
|
||||||
|
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
|
||||||
|
continue
|
||||||
|
break
|
||||||
|
|
||||||
|
results = []
|
||||||
|
pady1, pady2, padx1, padx2 = [0, 10, 0, 0]
|
||||||
|
for rect, image in zip(predictions, images):
|
||||||
|
if rect is None:
|
||||||
|
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
|
||||||
|
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
|
||||||
|
|
||||||
|
y1 = max(0, rect[1] - pady1)
|
||||||
|
y2 = min(image.shape[0], rect[3] + pady2)
|
||||||
|
x1 = max(0, rect[0] - padx1)
|
||||||
|
x2 = min(image.shape[1], rect[2] + padx2)
|
||||||
|
|
||||||
|
results.append([x1, y1, x2, y2])
|
||||||
|
|
||||||
|
boxes = np.array(results)
|
||||||
|
if not False: boxes = get_smoothened_boxes(boxes, T=5)
|
||||||
|
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
||||||
|
|
||||||
|
del detector
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
img_size = 96
|
||||||
|
wav2lip_batch_size = 128
|
||||||
|
|
||||||
|
|
||||||
|
def datagen(frames, mels):
|
||||||
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
||||||
|
|
||||||
|
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
|
||||||
|
|
||||||
|
# for i, m in enumerate(mels):
|
||||||
|
for i in range(mels.qsize()):
|
||||||
|
idx = 0 if True else i%len(frames)
|
||||||
|
frame_to_save = frames[__mirror_index(1, i)].copy()
|
||||||
|
face, coords = face_det_results[idx].copy()
|
||||||
|
|
||||||
|
face = cv2.resize(face, (img_size, img_size))
|
||||||
|
m = mels.get()
|
||||||
|
|
||||||
|
img_batch.append(face)
|
||||||
|
mel_batch.append(m)
|
||||||
|
frame_batch.append(frame_to_save)
|
||||||
|
coords_batch.append(coords)
|
||||||
|
|
||||||
|
if len(img_batch) >= wav2lip_batch_size:
|
||||||
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
||||||
|
|
||||||
|
img_masked = img_batch.copy()
|
||||||
|
img_masked[:, img_size//2:] = 0
|
||||||
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
||||||
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
||||||
|
|
||||||
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
||||||
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
||||||
|
|
||||||
|
if len(img_batch) > 0:
|
||||||
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
||||||
|
img_masked = img_batch.copy()
|
||||||
|
img_masked[:, img_size//2:] = 0
|
||||||
|
|
||||||
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
||||||
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
||||||
|
|
||||||
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Human:
|
class Human:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self._fps = 50 # 20 ms per frame
|
self._fps = 25 # 20 ms per frame
|
||||||
self._batch_size = 16
|
self._batch_size = 16
|
||||||
self._sample_rate = 16000
|
self._sample_rate = 16000
|
||||||
self._stride_left_size = 10
|
self._stride_left_size = 10
|
||||||
@ -151,17 +252,54 @@ class Human:
|
|||||||
self._output_queue = mp.Queue()
|
self._output_queue = mp.Queue()
|
||||||
self._res_frame_queue = mp.Queue(self._batch_size * 2)
|
self._res_frame_queue = mp.Queue(self._batch_size * 2)
|
||||||
|
|
||||||
self._chunk_2_mal = Chunk2Mal(self)
|
# self._chunk_2_mal = Chunk2Mal(self)
|
||||||
self._tts = TTSBase(self)
|
# self._tts = TTSBase(self)
|
||||||
|
|
||||||
|
self.mel_chunks_queue_ = Queue()
|
||||||
|
self.test()
|
||||||
|
|
||||||
|
# face_images_path = r'./face/'
|
||||||
|
# self._face_image_paths = utils.read_files_path(face_images_path)
|
||||||
|
# print(self._face_image_paths)
|
||||||
|
# self.render_event = mp.Event()
|
||||||
|
# mp.Process(target=inference, args=(self.render_event, self._batch_size, self._face_image_paths,
|
||||||
|
# self._feat_queue, self._output_queue, self._res_frame_queue,
|
||||||
|
# )).start()
|
||||||
|
# self.render_event.set()
|
||||||
|
|
||||||
|
def test(self):
|
||||||
|
wav = audio.load_wav(r'./audio/audio1.wav', 16000)
|
||||||
|
mel = audio.melspectrogram(wav)
|
||||||
|
if np.isnan(mel.reshape(-1)).sum() > 0:
|
||||||
|
raise ValueError(
|
||||||
|
'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
|
||||||
|
|
||||||
|
mel_step_size = 16
|
||||||
|
|
||||||
|
print('fps:', self._fps)
|
||||||
|
mel_idx_multiplier = 80. / self._fps
|
||||||
|
print('mel_idx_multiplier:', mel_idx_multiplier)
|
||||||
|
i = 0
|
||||||
|
while 1:
|
||||||
|
start_idx = int(i * mel_idx_multiplier)
|
||||||
|
if start_idx + mel_step_size > len(mel[0]):
|
||||||
|
# mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
|
||||||
|
self.mel_chunks_queue_.put(mel[:, len(mel[0]) - mel_step_size:])
|
||||||
|
break
|
||||||
|
# mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size])
|
||||||
|
self.mel_chunks_queue_.put(mel[:, start_idx: start_idx + mel_step_size])
|
||||||
|
i += 1
|
||||||
|
|
||||||
|
batch_size = 128
|
||||||
|
print('batch_size:', batch_size, ' mel_chunks len:', self.mel_chunks_queue_.qsize())
|
||||||
|
|
||||||
face_images_path = r'./face/'
|
face_images_path = r'./face/'
|
||||||
self._face_image_paths = utils.read_files_path(face_images_path)
|
face_images_path = utils.read_files_path(face_images_path)
|
||||||
print(self._face_image_paths)
|
face_list_cycle = read_images(face_images_path)
|
||||||
self.render_event = mp.Event()
|
face_images_length = len(face_list_cycle)
|
||||||
mp.Process(target=inference, args=(self.render_event, self._batch_size, self._face_image_paths,
|
logging.info(f'face images length: {face_images_length}')
|
||||||
self._feat_queue, self._output_queue, self._res_frame_queue,
|
print(f'face images length: {face_images_length}')
|
||||||
)).start()
|
gen = datagen(face_list_cycle, self.mel_chunks_queue_)
|
||||||
self.render_event.set()
|
|
||||||
|
|
||||||
def get_fps(self):
|
def get_fps(self):
|
||||||
return self._fps
|
return self._fps
|
||||||
@ -179,10 +317,10 @@ class Human:
|
|||||||
return self._stride_right_size
|
return self._stride_right_size
|
||||||
|
|
||||||
def on_destroy(self):
|
def on_destroy(self):
|
||||||
self.render_event.clear()
|
# self.render_event.clear()
|
||||||
self._chunk_2_mal.stop()
|
# self._chunk_2_mal.stop()
|
||||||
if self._tts is not None:
|
# if self._tts is not None:
|
||||||
self._tts.stop()
|
# self._tts.stop()
|
||||||
logging.info('human destroy')
|
logging.info('human destroy')
|
||||||
|
|
||||||
def read(self, txt):
|
def read(self, txt):
|
||||||
|
@ -17,7 +17,7 @@ class Chunk2Mal:
|
|||||||
|
|
||||||
self._chunks = []
|
self._chunks = []
|
||||||
# 320 samples per chunk (20ms * 16000 / 1000)audio_chunk
|
# 320 samples per chunk (20ms * 16000 / 1000)audio_chunk
|
||||||
self._chunk_len = self._human.get_audio_sample_rate // self._human.get_fps()
|
self._chunk_len = self._human.get_audio_sample_rate() // self._human.get_fps()
|
||||||
|
|
||||||
self._exit_event = Event()
|
self._exit_event = Event()
|
||||||
self._thread = Thread(target=self._on_run)
|
self._thread = Thread(target=self._on_run)
|
||||||
@ -82,7 +82,7 @@ class Chunk2Mal:
|
|||||||
chunk = self._audio_chunk_queue.get(block=True, timeout=1)
|
chunk = self._audio_chunk_queue.get(block=True, timeout=1)
|
||||||
type = 1
|
type = 1
|
||||||
except queue.Empty:
|
except queue.Empty:
|
||||||
chunk = np.zeros(self._human.get_chunk(), dtype=np.float32)
|
chunk = np.zeros(self._chunk_len, dtype=np.float32)
|
||||||
type = 0
|
type = 0
|
||||||
return chunk, type
|
return chunk, type
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user