modify human and tts
This commit is contained in:
parent
a68fbbc0de
commit
1ef9225dda
111
Human.py
111
Human.py
@ -1,4 +1,5 @@
|
|||||||
#encoding = utf8
|
#encoding = utf8
|
||||||
|
import copy
|
||||||
import io
|
import io
|
||||||
import logging
|
import logging
|
||||||
|
|
||||||
@ -25,6 +26,7 @@ from queue import Queue
|
|||||||
|
|
||||||
from tts.EdgeTTS import EdgeTTS
|
from tts.EdgeTTS import EdgeTTS
|
||||||
from tts.TTSBase import TTSBase
|
from tts.TTSBase import TTSBase
|
||||||
|
from utils import mirror_index
|
||||||
|
|
||||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||||
|
|
||||||
@ -62,16 +64,6 @@ def read_images(img_list):
|
|||||||
return frames
|
return frames
|
||||||
|
|
||||||
|
|
||||||
def __mirror_index(size, index):
|
|
||||||
# size = len(self.coord_list_cycle)
|
|
||||||
turn = index // size
|
|
||||||
res = index % size
|
|
||||||
if turn % 2 == 0:
|
|
||||||
return res
|
|
||||||
else:
|
|
||||||
return size - res - 1
|
|
||||||
|
|
||||||
|
|
||||||
# python.exe .\inference.py --checkpoint_path .\checkpoints\wav2lip.pth --face
|
# python.exe .\inference.py --checkpoint_path .\checkpoints\wav2lip.pth --face
|
||||||
# .\face\img00016.jpg --audio .\audio\audio1.wav
|
# .\face\img00016.jpg --audio .\audio\audio1.wav
|
||||||
def inference(render_event, batch_size, face_images_path, audio_feat_queue, audio_out_queue, res_frame_queue):
|
def inference(render_event, batch_size, face_images_path, audio_feat_queue, audio_out_queue, res_frame_queue):
|
||||||
@ -111,13 +103,13 @@ def inference(render_event, batch_size, face_images_path, audio_feat_queue, audi
|
|||||||
print(f'is_all_silence {is_all_silence}')
|
print(f'is_all_silence {is_all_silence}')
|
||||||
if is_all_silence:
|
if is_all_silence:
|
||||||
for i in range(batch_size):
|
for i in range(batch_size):
|
||||||
res_frame_queue.put((None, __mirror_index(length, index), audio_frames[i*2:i*2+2]))
|
res_frame_queue.put((None, mirror_index(length, index), audio_frames[i*2:i*2+2]))
|
||||||
index = index + 1
|
index = index + 1
|
||||||
else:
|
else:
|
||||||
t = time.perf_counter()
|
t = time.perf_counter()
|
||||||
image_batch = []
|
image_batch = []
|
||||||
for i in range(batch_size):
|
for i in range(batch_size):
|
||||||
idx = __mirror_index(length, index + i)
|
idx = mirror_index(length, index + i)
|
||||||
face = face_list_cycle[idx]
|
face = face_list_cycle[idx]
|
||||||
image_batch.append(face)
|
image_batch.append(face)
|
||||||
image_batch, mel_batch = np.asarray(image_batch), np.asarray(mel_batch)
|
image_batch, mel_batch = np.asarray(image_batch), np.asarray(mel_batch)
|
||||||
@ -143,7 +135,7 @@ def inference(render_event, batch_size, face_images_path, audio_feat_queue, audi
|
|||||||
count_time = 0
|
count_time = 0
|
||||||
|
|
||||||
for i, res_frame in enumerate(pred):
|
for i, res_frame in enumerate(pred):
|
||||||
res_frame_queue.put((res_frame, __mirror_index(length, index), audio_frames[i*2 : i*2+2]))
|
res_frame_queue.put((res_frame, mirror_index(length, index), audio_frames[i*2 : i*2+2]))
|
||||||
index = index + 1
|
index = index + 1
|
||||||
|
|
||||||
logging.info('finish inference')
|
logging.info('finish inference')
|
||||||
@ -212,7 +204,7 @@ def datagen(frames, mels):
|
|||||||
# for i, m in enumerate(mels):
|
# for i, m in enumerate(mels):
|
||||||
for i in range(mels.qsize()):
|
for i in range(mels.qsize()):
|
||||||
idx = 0 if True else i%len(frames)
|
idx = 0 if True else i%len(frames)
|
||||||
frame_to_save = frames[__mirror_index(1, i)].copy()
|
frame_to_save = frames[mirror_index(1, i)].copy()
|
||||||
face, coords = face_det_results[idx].copy()
|
face, coords = face_det_results[idx].copy()
|
||||||
|
|
||||||
face = cv2.resize(face, (img_size, img_size))
|
face = cv2.resize(face, (img_size, img_size))
|
||||||
@ -294,7 +286,7 @@ def load_audio_from_bytes(byte_data):
|
|||||||
|
|
||||||
class Human:
|
class Human:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self._fps = 25 # 40 ms per frame
|
self._fps = 50 # 20 ms per frame
|
||||||
self._batch_size = 16
|
self._batch_size = 16
|
||||||
self._sample_rate = 16000
|
self._sample_rate = 16000
|
||||||
self._stride_left_size = 10
|
self._stride_left_size = 10
|
||||||
@ -303,17 +295,27 @@ class Human:
|
|||||||
self._output_queue = mp.Queue()
|
self._output_queue = mp.Queue()
|
||||||
self._res_frame_queue = mp.Queue(self._batch_size * 2)
|
self._res_frame_queue = mp.Queue(self._batch_size * 2)
|
||||||
|
|
||||||
self._chunk_2_mal = Chunk2Mal(self)
|
full_images, face_frames, coord_frames = self._avatar()
|
||||||
self._tts = TTSBase(self)
|
self._frame_list_cycle = full_images
|
||||||
self._infer = Infer(self)
|
self._face_list_cycle = face_frames
|
||||||
|
self._coord_list_cycle = coord_frames
|
||||||
|
face_images_length = len(self._face_list_cycle)
|
||||||
|
logging.info(f'face images length: {face_images_length}')
|
||||||
|
print(f'face images length: {face_images_length}')
|
||||||
|
|
||||||
self.mel_chunks_queue_ = Queue()
|
self.mel_chunks_queue_ = Queue()
|
||||||
self.audio_chunks_queue_ = Queue()
|
self.audio_chunks_queue_ = Queue()
|
||||||
self._test_image_queue = Queue()
|
self._test_image_queue = Queue()
|
||||||
#
|
self._res_render_queue = Queue()
|
||||||
self._thread = None
|
|
||||||
thread = threading.Thread(target=self.test)
|
self._chunk_2_mal = Chunk2Mal(self)
|
||||||
thread.start()
|
self._tts = TTSBase(self)
|
||||||
|
self._infer = Infer(self)
|
||||||
|
|
||||||
|
# #
|
||||||
|
# self._thread = None
|
||||||
|
# thread = threading.Thread(target=self.test)
|
||||||
|
# thread.start()
|
||||||
# self.test()
|
# self.test()
|
||||||
# self.play_pcm()
|
# self.play_pcm()
|
||||||
|
|
||||||
@ -339,6 +341,21 @@ class Human:
|
|||||||
# stream.close()
|
# stream.close()
|
||||||
# p.terminate()
|
# p.terminate()
|
||||||
|
|
||||||
|
def _avatar(self):
|
||||||
|
face_images_path = r'./face/'
|
||||||
|
face_images_path = utils.read_files_path(face_images_path)
|
||||||
|
full_list_cycle = read_images(face_images_path)
|
||||||
|
|
||||||
|
face_det_results = face_detect(full_list_cycle)
|
||||||
|
|
||||||
|
face_frames = []
|
||||||
|
coord_frames = []
|
||||||
|
for face, coord in face_det_results:
|
||||||
|
face_frames.append(face)
|
||||||
|
coord_frames.append(coord)
|
||||||
|
|
||||||
|
return full_list_cycle, face_frames, coord_frames
|
||||||
|
|
||||||
def inter(self, model, chunks, face_list_cycle, face_det_results, out, j):
|
def inter(self, model, chunks, face_list_cycle, face_det_results, out, j):
|
||||||
inputs = np.concatenate(chunks) # [5 * chunk]
|
inputs = np.concatenate(chunks) # [5 * chunk]
|
||||||
mel = audio.melspectrogram(inputs)
|
mel = audio.melspectrogram(inputs)
|
||||||
@ -445,9 +462,11 @@ class Human:
|
|||||||
'temp/resul_tttt.mp4')
|
'temp/resul_tttt.mp4')
|
||||||
subprocess.call(command, shell=platform.system() != 'Windows')
|
subprocess.call(command, shell=platform.system() != 'Windows')
|
||||||
|
|
||||||
|
|
||||||
# gen = datagen(face_list_cycle, self.mel_chunks_queue_)
|
# gen = datagen(face_list_cycle, self.mel_chunks_queue_)
|
||||||
|
|
||||||
|
def get_face_list_cycle(self):
|
||||||
|
return self._face_list_cycle
|
||||||
|
|
||||||
def get_fps(self):
|
def get_fps(self):
|
||||||
return self._fps
|
return self._fps
|
||||||
|
|
||||||
@ -476,12 +495,20 @@ class Human:
|
|||||||
return
|
return
|
||||||
self._tts.push_txt(txt)
|
self._tts.push_txt(txt)
|
||||||
|
|
||||||
def push_audio_chunk(self, audio_chunk):
|
def put_audio_frame(self, audio_chunk):
|
||||||
self._chunk_2_mal.push_chunk(audio_chunk)
|
self._chunk_2_mal.put_audio_frame(audio_chunk)
|
||||||
|
|
||||||
def push_mel_chunks_queue(self, mel_chunk):
|
# def push_audio_chunk(self, audio_chunk):
|
||||||
self._infer.push(mel_chunk)
|
# self._chunk_2_mal.push_chunk(audio_chunk)
|
||||||
# self.audio_chunks_queue_.put(audio_chunk)
|
|
||||||
|
def push_mel_chunks(self, mel_chunks):
|
||||||
|
self._infer.push(mel_chunks)
|
||||||
|
|
||||||
|
def push_out_put(self, frame, type_):
|
||||||
|
self._infer.push_out_queue(frame, type_)
|
||||||
|
|
||||||
|
def push_mel_chunks_queue(self, audio_chunk):
|
||||||
|
self.audio_chunks_queue_.put(audio_chunk)
|
||||||
|
|
||||||
def push_feat_queue(self, mel_chunks):
|
def push_feat_queue(self, mel_chunks):
|
||||||
print("push_feat_queue")
|
print("push_feat_queue")
|
||||||
@ -493,14 +520,38 @@ class Human:
|
|||||||
def push_render_image(self, image):
|
def push_render_image(self, image):
|
||||||
self._test_image_queue.put(image)
|
self._test_image_queue.put(image)
|
||||||
|
|
||||||
|
def push_res_frame(self, res_frame, idx, audio_frames):
|
||||||
|
self._res_render_queue.put((res_frame, idx, audio_frames))
|
||||||
|
|
||||||
def render(self):
|
def render(self):
|
||||||
try:
|
try:
|
||||||
# img, aud = self._res_frame_queue.get(block=True, timeout=.3)
|
# img, aud = self._res_frame_queue.get(block=True, timeout=.3)
|
||||||
img = self._test_image_queue.get(block=True, timeout=.3)
|
# img = self._test_image_queue.get(block=True, timeout=.3)
|
||||||
|
res_frame, idx, audio_frames = self._res_render_queue.get(block=True, timeout=.3)
|
||||||
except queue.Empty:
|
except queue.Empty:
|
||||||
# print('render queue.Empty:')
|
# print('render queue.Empty:')
|
||||||
return None
|
return None
|
||||||
return img
|
|
||||||
|
if audio_frames[0][1] != 0 and audio_frames[1][1] != 0:
|
||||||
|
combine_frame = self._frame_list_cycle[idx]
|
||||||
|
else:
|
||||||
|
bbox = self._coord_list_cycle[idx]
|
||||||
|
combine_frame = copy.deepcopy(self._frame_list_cycle[idx])
|
||||||
|
y1, y2, x1, x2 = bbox
|
||||||
|
try:
|
||||||
|
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1))
|
||||||
|
except:
|
||||||
|
return None
|
||||||
|
# combine_frame = get_image(ori_frame,res_frame,bbox)
|
||||||
|
# t=time.perf_counter()
|
||||||
|
combine_frame[y1:y2, x1:x2] = res_frame
|
||||||
|
|
||||||
|
image = combine_frame
|
||||||
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
# print('blending time:',time.perf_counter()-t)
|
||||||
|
|
||||||
# def pull_audio_chunk(self):
|
# def pull_audio_chunk(self):
|
||||||
# try:
|
# try:
|
||||||
|
97
infer.py
97
infer.py
@ -11,8 +11,8 @@ import torch
|
|||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
import face_detection
|
import face_detection
|
||||||
import utils
|
|
||||||
from models import Wav2Lip
|
from models import Wav2Lip
|
||||||
|
from utils import mirror_index
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -147,7 +147,8 @@ def datagen_signal(frame, mel, face_det_results):
|
|||||||
class Infer:
|
class Infer:
|
||||||
def __init__(self, human):
|
def __init__(self, human):
|
||||||
self._human = human
|
self._human = human
|
||||||
self._queue = Queue()
|
self._feat_queue = Queue()
|
||||||
|
self._audio_out_queue = Queue()
|
||||||
|
|
||||||
self._exit_event = Event()
|
self._exit_event = Event()
|
||||||
self._run_thread = Thread(target=self.__on_run)
|
self._run_thread = Thread(target=self.__on_run)
|
||||||
@ -155,17 +156,17 @@ class Infer:
|
|||||||
self._run_thread.start()
|
self._run_thread.start()
|
||||||
|
|
||||||
def __on_run(self):
|
def __on_run(self):
|
||||||
face_images_path = r'./face/'
|
|
||||||
face_images_path = utils.read_files_path(face_images_path)
|
|
||||||
face_list_cycle = read_images(face_images_path)
|
|
||||||
face_images_length = len(face_list_cycle)
|
|
||||||
logging.info(f'face images length: {face_images_length}')
|
|
||||||
print(f'face images length: {face_images_length}')
|
|
||||||
|
|
||||||
model = load_model(r'.\checkpoints\wav2lip.pth')
|
model = load_model(r'.\checkpoints\wav2lip.pth')
|
||||||
print("Model loaded")
|
print("Model loaded")
|
||||||
|
|
||||||
|
face_list_cycle = self._human.get_face_list_cycle()
|
||||||
|
|
||||||
|
# self.__do_run1(face_list_cycle, model)
|
||||||
|
self.__do_run2(face_list_cycle, model)
|
||||||
|
|
||||||
# frame_h, frame_w = face_list_cycle[0].shape[:-1]
|
# frame_h, frame_w = face_list_cycle[0].shape[:-1]
|
||||||
|
|
||||||
|
def __do_run1(self, face_list_cycle, model):
|
||||||
face_det_results = face_detect(face_list_cycle)
|
face_det_results = face_detect(face_list_cycle)
|
||||||
|
|
||||||
j = 0
|
j = 0
|
||||||
@ -173,7 +174,7 @@ class Infer:
|
|||||||
count = 0
|
count = 0
|
||||||
while self._exit_event.is_set():
|
while self._exit_event.is_set():
|
||||||
try:
|
try:
|
||||||
m = self._queue.get(block=True, timeout=1)
|
m = self._feat_queue.get(block=True, timeout=1)
|
||||||
except queue.Empty:
|
except queue.Empty:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
@ -202,5 +203,77 @@ class Infer:
|
|||||||
# out.write(f)
|
# out.write(f)
|
||||||
# print('infer count:', count)
|
# print('infer count:', count)
|
||||||
|
|
||||||
def push(self, chunk):
|
def __do_run2(self, face_list_cycle, model):
|
||||||
self._queue.put(chunk)
|
length = len(face_list_cycle)
|
||||||
|
index = 0
|
||||||
|
count = 0
|
||||||
|
count_time = 0
|
||||||
|
print('start inference')
|
||||||
|
while True:
|
||||||
|
if self._exit_event.is_set():
|
||||||
|
start_time = time.perf_counter()
|
||||||
|
try:
|
||||||
|
mel_batch = self._feat_queue.get(block=True, timeout=1)
|
||||||
|
except queue.Empty:
|
||||||
|
continue
|
||||||
|
|
||||||
|
is_all_silence = True
|
||||||
|
audio_frames = []
|
||||||
|
for _ in range(self._human.get_batch_size() * 2):
|
||||||
|
frame, type_ = self._audio_out_queue.get()
|
||||||
|
audio_frames.append((frame, type_))
|
||||||
|
if type_ == 0:
|
||||||
|
is_all_silence = False
|
||||||
|
|
||||||
|
if is_all_silence:
|
||||||
|
for i in range(self._human.get_batch_size()):
|
||||||
|
# res_frame_queue.put((None, mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
|
||||||
|
self._human.push_res_frame(None, mirror_index(length, index), audio_frames[i * 2:i * 2 + 2])
|
||||||
|
index = index + 1
|
||||||
|
else:
|
||||||
|
print('infer=======')
|
||||||
|
t = time.perf_counter()
|
||||||
|
img_batch = []
|
||||||
|
for i in range(self._human.get_batch_size()):
|
||||||
|
idx = mirror_index(length, index + i)
|
||||||
|
face = face_list_cycle[idx]
|
||||||
|
img_batch.append(face)
|
||||||
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
||||||
|
|
||||||
|
img_masked = img_batch.copy()
|
||||||
|
img_masked[:, face.shape[0] // 2:] = 0
|
||||||
|
|
||||||
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
||||||
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
||||||
|
|
||||||
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
||||||
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
pred = model(mel_batch, img_batch)
|
||||||
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
||||||
|
|
||||||
|
count_time += (time.perf_counter() - t)
|
||||||
|
count += self._human.batch_size()
|
||||||
|
# _totalframe += 1
|
||||||
|
if count >= 100:
|
||||||
|
print(f"------actual avg infer fps:{count / count_time:.4f}")
|
||||||
|
count = 0
|
||||||
|
count_time = 0
|
||||||
|
for i, res_frame in enumerate(pred):
|
||||||
|
# self.__pushmedia(res_frame,loop,audio_track,video_track)
|
||||||
|
# res_frame_queue.put(
|
||||||
|
# (res_frame, __mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
|
||||||
|
self._human.push_res_frame(res_frame, mirror_index(length, index),
|
||||||
|
audio_frames[i * 2:i * 2 + 2])
|
||||||
|
index = index + 1
|
||||||
|
# print('total batch time:',time.perf_counter()-start_time)
|
||||||
|
else:
|
||||||
|
time.sleep(1)
|
||||||
|
print('musereal inference processor stop')
|
||||||
|
|
||||||
|
def push(self, mel_chunks):
|
||||||
|
self._feat_queue.put(mel_chunks)
|
||||||
|
|
||||||
|
def push_out_queue(self, frame, type_):
|
||||||
|
self._audio_out_queue.put((frame, type_))
|
||||||
|
149
tts/Chunk2Mal.py
149
tts/Chunk2Mal.py
@ -1,9 +1,10 @@
|
|||||||
#encoding = utf8
|
#encoding = utf8
|
||||||
import ctypes
|
|
||||||
import logging
|
import logging
|
||||||
import queue
|
import queue
|
||||||
import time
|
import time
|
||||||
from queue import Queue
|
from queue import Queue
|
||||||
|
import multiprocessing as mp
|
||||||
from threading import Thread, Event
|
from threading import Thread, Event
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -13,90 +14,69 @@ from audio_render import AudioRender
|
|||||||
|
|
||||||
class Chunk2Mal:
|
class Chunk2Mal:
|
||||||
def __init__(self, human):
|
def __init__(self, human):
|
||||||
self._audio_chunk_queue = Queue()
|
# self._audio_chunk_queue = Queue()
|
||||||
self._human = human
|
self._human = human
|
||||||
self._thread = None
|
self._thread = None
|
||||||
|
|
||||||
self._chunks = []
|
self.frames = []
|
||||||
self._audio_chunks = []
|
self.queue = Queue()
|
||||||
|
# self.output_queue = mp.Queue()
|
||||||
|
# self.feat_queue = mp.Queue(2)
|
||||||
|
|
||||||
# 320 samples per chunk (20ms * 16000 / 1000)audio_chunk
|
# 320 samples per chunk (20ms * 16000 / 1000)audio_chunk
|
||||||
self._chunk_len = self._human.get_audio_sample_rate() // self._human.get_fps()
|
self.chunk = self._human.get_audio_sample_rate() // self._human.get_fps()
|
||||||
|
|
||||||
self._exit_event = Event()
|
self._exit_event = Event()
|
||||||
self._thread = Thread(target=self._on_run)
|
self._thread = Thread(target=self._on_run)
|
||||||
self._exit_event.set()
|
self._exit_event.set()
|
||||||
self._thread.start()
|
self._thread.start()
|
||||||
self._audio_render = AudioRender()
|
# self._audio_render = AudioRender()
|
||||||
self._stream_len = 0
|
self._stream_len = 0
|
||||||
logging.info('chunk2mal start')
|
logging.info('chunk2mal start')
|
||||||
|
|
||||||
def _concatenate(self):
|
|
||||||
logging.info('np.concatenate')
|
|
||||||
if len(self._chunks) < 3:
|
|
||||||
logging.info(f'np.concatenate: {len(self._chunks)}')
|
|
||||||
return
|
|
||||||
inputs = np.concatenate(self._chunks) # [5 * chunk]
|
|
||||||
self._chunks = []
|
|
||||||
mel = audio.melspectrogram(inputs)
|
|
||||||
if np.isnan(mel.reshape(-1)).sum() > 0:
|
|
||||||
raise ValueError(
|
|
||||||
'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
|
|
||||||
|
|
||||||
mel_step_size = 16
|
|
||||||
# print('fps:', self._human.get_fps())
|
|
||||||
mel_idx_multiplier = 80. / self._human.get_fps()
|
|
||||||
# print('mel_idx_multiplier:', mel_idx_multiplier)
|
|
||||||
count = 0
|
|
||||||
i = 0
|
|
||||||
while 1:
|
|
||||||
count = count + 1
|
|
||||||
start_idx = int(i * mel_idx_multiplier)
|
|
||||||
print('i', i, 'start_idx', start_idx, 'mel len:', len(mel[0]))
|
|
||||||
if start_idx + mel_step_size > len(mel[0]):
|
|
||||||
self._human.push_mel_chunks_queue(mel[:, len(mel[0]) - mel_step_size:])
|
|
||||||
break
|
|
||||||
self._human.push_mel_chunks_queue(mel[:, start_idx: start_idx + mel_step_size])
|
|
||||||
i += 1
|
|
||||||
|
|
||||||
# wav = np.concatenate(self._audio_chunks) # [5 * chunk]self._audio_chunks
|
|
||||||
# print('_concatenate', len(wav))
|
|
||||||
# audio.save_chunks([wav], 16000, "./temp/audio/")
|
|
||||||
# wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
|
||||||
# wav = wav.astype(np.int16)
|
|
||||||
# self._audio_render.write(wav, len(wav))
|
|
||||||
self._audio_chunks = []
|
|
||||||
|
|
||||||
print('mel_chunks count:', count)
|
|
||||||
|
|
||||||
def _on_run(self):
|
def _on_run(self):
|
||||||
logging.info('chunk2mal run')
|
logging.info('chunk2mal run')
|
||||||
while self._exit_event.is_set():
|
while self._exit_event.is_set():
|
||||||
if self._audio_chunk_queue.empty():
|
self._run_step()
|
||||||
if len(self._chunks) > 0:
|
time.sleep(0.01)
|
||||||
self._concatenate()
|
|
||||||
else:
|
|
||||||
time.sleep(0.5)
|
|
||||||
continue
|
|
||||||
try:
|
|
||||||
chunk = self._audio_chunk_queue.get(block=True, timeout=1)
|
|
||||||
self._chunks.append(chunk)
|
|
||||||
self._stream_len = self._stream_len + len(chunk)
|
|
||||||
print('Chunk2Mal _stream_len:', self._stream_len)
|
|
||||||
self._audio_chunks.append(chunk.copy())
|
|
||||||
|
|
||||||
# self._human.push_audio_frames(chunk, 0)
|
|
||||||
if len(self._chunks) < 10: # 200ms
|
|
||||||
continue
|
|
||||||
except queue.Empty:
|
|
||||||
# print('Chunk2Mal queue.Empty')
|
|
||||||
continue
|
|
||||||
|
|
||||||
print('len(self._chunks):', len(self._chunks))
|
|
||||||
self._concatenate()
|
|
||||||
|
|
||||||
|
|
||||||
logging.info('chunk2mal exit')
|
logging.info('chunk2mal exit')
|
||||||
|
|
||||||
|
def _run_step(self):
|
||||||
|
for _ in range(self._human.get_batch_size() * 2):
|
||||||
|
frame, _type = self.get_audio_frame()
|
||||||
|
self.frames.append(frame)
|
||||||
|
# put to output
|
||||||
|
self._human.push_out_put(frame, _type)
|
||||||
|
# self.output_queue.put((frame, _type))
|
||||||
|
# context not enough, do not run network.
|
||||||
|
if len(self.frames) <= self._human.get_stride_left_size() + self._human.get_stride_right_size():
|
||||||
|
return
|
||||||
|
|
||||||
|
inputs = np.concatenate(self.frames) # [N * chunk]
|
||||||
|
mel = audio.melspectrogram(inputs)
|
||||||
|
# print(mel.shape[0],mel.shape,len(mel[0]),len(self.frames))
|
||||||
|
# cut off stride
|
||||||
|
left = max(0, self._human.get_stride_left_size() * 80 / 50)
|
||||||
|
right = min(len(mel[0]), len(mel[0]) - self._human.get_stride_right_size() * 80 / 50)
|
||||||
|
mel_idx_multiplier = 80. * 2 / self._human.get_fps()
|
||||||
|
mel_step_size = 16
|
||||||
|
i = 0
|
||||||
|
mel_chunks = []
|
||||||
|
while i < (len(self.frames) - self._human.get_stride_left_size() - self._human.get_stride_right_size()) / 2:
|
||||||
|
start_idx = int(left + i * mel_idx_multiplier)
|
||||||
|
# print(start_idx)
|
||||||
|
if start_idx + mel_step_size > len(mel[0]):
|
||||||
|
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
|
||||||
|
else:
|
||||||
|
mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size])
|
||||||
|
i += 1
|
||||||
|
self._human.push_mel_chunks(mel_chunks)
|
||||||
|
# self.feat_queue.put(mel_chunks)
|
||||||
|
|
||||||
|
# discard the old part to save memory
|
||||||
|
self.frames = self.frames[-(self._human.get_stride_left_size() + self._human.get_stride_right_size()):]
|
||||||
|
|
||||||
def stop(self):
|
def stop(self):
|
||||||
if self._exit_event is None:
|
if self._exit_event is None:
|
||||||
return
|
return
|
||||||
@ -106,15 +86,34 @@ class Chunk2Mal:
|
|||||||
self._thread.join()
|
self._thread.join()
|
||||||
logging.info('chunk2mal stop')
|
logging.info('chunk2mal stop')
|
||||||
|
|
||||||
def push_chunk(self, chunk):
|
def pause_talk(self):
|
||||||
self._audio_chunk_queue.put(chunk)
|
self.queue.queue.clear()
|
||||||
|
|
||||||
def pull_chunk(self):
|
def put_audio_frame(self, audio_chunk): #16khz 20ms pcm
|
||||||
|
self.queue.put(audio_chunk)
|
||||||
|
|
||||||
|
def get_audio_frame(self):
|
||||||
try:
|
try:
|
||||||
chunk = self._audio_chunk_queue.get(block=True, timeout=1)
|
frame = self.queue.get(block=True, timeout=0.01)
|
||||||
type = 1
|
|
||||||
except queue.Empty:
|
|
||||||
chunk = np.zeros(self._chunk_len, dtype=np.float32)
|
|
||||||
type = 0
|
type = 0
|
||||||
return chunk, type
|
# print(f'[INFO] get frame {frame.shape}')
|
||||||
|
except queue.Empty:
|
||||||
|
frame = np.zeros(self.chunk, dtype=np.float32)
|
||||||
|
type = 1
|
||||||
|
|
||||||
|
return frame, type
|
||||||
|
|
||||||
|
def get_audio_out(self): # get origin audio pcm to nerf
|
||||||
|
return self.output_queue.get()
|
||||||
|
|
||||||
|
def warm_up(self):
|
||||||
|
for _ in range(self._human.get_stride_left_size() + self._human.get_stride_right_size()):
|
||||||
|
audio_frame, _type = self.get_audio_frame()
|
||||||
|
self.frames.append(audio_frame)
|
||||||
|
self.output_queue.put((audio_frame, type))
|
||||||
|
for _ in range(self._human.get_stride_right_size()):
|
||||||
|
self.output_queue.get()
|
||||||
|
|
||||||
|
def get_next_feat(self, block, timeout):
|
||||||
|
return self.feat_queue.get(block, timeout)
|
||||||
|
|
||||||
|
@ -27,6 +27,7 @@ class EdgeTTS(TTSBase):
|
|||||||
stream = self.__create_bytes_stream(self._io_stream)
|
stream = self.__create_bytes_stream(self._io_stream)
|
||||||
stream_len = stream.shape[0]
|
stream_len = stream.shape[0]
|
||||||
index = 0
|
index = 0
|
||||||
|
|
||||||
while stream_len >= self._chunk:
|
while stream_len >= self._chunk:
|
||||||
self._human.push_audio_chunk(stream[index:index + self._chunk])
|
self._human.push_audio_chunk(stream[index:index + self._chunk])
|
||||||
stream_len -= self._chunk
|
stream_len -= self._chunk
|
||||||
@ -56,4 +57,3 @@ class EdgeTTS(TTSBase):
|
|||||||
|
|
||||||
if chuck['type'] == 'audio':
|
if chuck['type'] == 'audio':
|
||||||
self._io_stream.write(chuck['data'])
|
self._io_stream.write(chuck['data'])
|
||||||
|
|
||||||
|
119
tts/TTSBase.py
119
tts/TTSBase.py
@ -5,9 +5,7 @@ import time
|
|||||||
|
|
||||||
import edge_tts
|
import edge_tts
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pyaudio
|
import soundfile as sf
|
||||||
import soundfile
|
|
||||||
import sounddevice
|
|
||||||
import resampy
|
import resampy
|
||||||
import queue
|
import queue
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
@ -16,7 +14,6 @@ from threading import Thread, Event
|
|||||||
|
|
||||||
|
|
||||||
import audio
|
import audio
|
||||||
from audio_render import AudioRender
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -26,17 +23,13 @@ class TTSBase:
|
|||||||
self._human = human
|
self._human = human
|
||||||
self._thread = None
|
self._thread = None
|
||||||
self._queue = Queue()
|
self._queue = Queue()
|
||||||
self._io_stream = BytesIO()
|
self.input_stream = BytesIO()
|
||||||
self._chunk_len = self._human.get_audio_sample_rate() // self._human.get_fps()
|
self.chunk = self._human.get_audio_sample_rate() // self._human.get_fps()
|
||||||
|
|
||||||
self._exit_event = Event()
|
self._exit_event = Event()
|
||||||
self._thread = Thread(target=self._on_run)
|
self._thread = Thread(target=self._on_run)
|
||||||
self._exit_event.set()
|
self._exit_event.set()
|
||||||
self._thread.start()
|
self._thread.start()
|
||||||
# self._pcm_player = pyaudio.PyAudio()
|
|
||||||
# self._pcm_stream = self._pcm_player.open(format=pyaudio.paInt16,
|
|
||||||
# channels=1, rate=24000, output=True)
|
|
||||||
# self._audio_render = AudioRender()
|
|
||||||
logging.info('tts start')
|
logging.info('tts start')
|
||||||
|
|
||||||
def _on_run(self):
|
def _on_run(self):
|
||||||
@ -52,94 +45,54 @@ class TTSBase:
|
|||||||
def _request(self, txt):
|
def _request(self, txt):
|
||||||
voice = 'zh-CN-XiaoyiNeural'
|
voice = 'zh-CN-XiaoyiNeural'
|
||||||
t = time.time()
|
t = time.time()
|
||||||
asyncio.new_event_loop().run_until_complete(self.__on_request(voice, txt))
|
asyncio.new_event_loop().run_until_complete(self.__main(voice, txt))
|
||||||
logger.info(f'edge tts time:{time.time() - t : 0.4f}s')
|
print(f'-------edge tts time:{time.time() - t:.4f}s')
|
||||||
|
|
||||||
self._io_stream.seek(0)
|
self.input_stream.seek(0)
|
||||||
stream = self.__create_bytes_stream(self._io_stream)
|
stream = self.__create_bytes_stream(self.input_stream)
|
||||||
audio.save_chunks([stream], 16000, './temp/audio/')
|
streamlen = stream.shape[0]
|
||||||
# wav = audio.split_audio(stream, 16000, 0.04)
|
idx = 0
|
||||||
|
print('-------tts start push chunk')
|
||||||
|
while streamlen >= self.chunk:
|
||||||
|
self._human.put_audio_frame(stream[idx:idx + self.chunk])
|
||||||
|
streamlen -= self.chunk
|
||||||
|
idx += self.chunk
|
||||||
|
# if streamlen>0: #skip last frame(not 20ms)
|
||||||
|
# self.queue.put(stream[idx:])
|
||||||
|
self.input_stream.seek(0)
|
||||||
|
self.input_stream.truncate()
|
||||||
|
print('-------tts finish push chunk')
|
||||||
|
|
||||||
# audio.save_chunks(wav, 16000, './temp/audio/')
|
def __create_bytes_stream(self, byte_stream):
|
||||||
# audio.save_wav(stream, "./temp/audio/test1.wav", 16000)
|
# byte_stream=BytesIO(buffer)
|
||||||
stream_len = stream.shape[0]
|
stream, sample_rate = sf.read(byte_stream) # [T*sample_rate,] float64
|
||||||
|
print(f'[INFO]tts audio stream {sample_rate}: {stream.shape}')
|
||||||
# wav = stream #np.concatenate(stream) # [5 * chunk]self._audio_chunks
|
|
||||||
# print('_concatenate', len(wav))
|
|
||||||
|
|
||||||
# self._audio_chunks = []
|
|
||||||
|
|
||||||
print("stream_len:", stream_len, " _chunk_len:", self._chunk_len)
|
|
||||||
index = 0
|
|
||||||
segment = 0
|
|
||||||
while stream_len >= self._chunk_len:
|
|
||||||
audio_chunk = stream[index:index + self._chunk_len]
|
|
||||||
self._human.push_audio_chunk(audio_chunk)
|
|
||||||
stream_len -= self._chunk_len
|
|
||||||
index += self._chunk_len
|
|
||||||
segment = segment + 1
|
|
||||||
|
|
||||||
if stream_len > 0:
|
|
||||||
audio_chunk = stream[index:index + stream_len]
|
|
||||||
self._human.push_audio_chunk(audio_chunk)
|
|
||||||
segment = segment + 1
|
|
||||||
|
|
||||||
print("segment:", segment)
|
|
||||||
self._io_stream.seek(0)
|
|
||||||
self._io_stream.truncate()
|
|
||||||
|
|
||||||
def __create_bytes_stream(self, io_stream):
|
|
||||||
stream, sample_rate = soundfile.read(io_stream)
|
|
||||||
logger.info(f'tts audio stream {sample_rate} : {stream.shape}')
|
|
||||||
stream = stream.astype(np.float32)
|
stream = stream.astype(np.float32)
|
||||||
|
|
||||||
if stream.ndim > 1:
|
if stream.ndim > 1:
|
||||||
logger.warning(f'tts audio has {stream.shape[1]} channels, only use the first')
|
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
|
||||||
stream = stream[:, 1]
|
stream = stream[:, 0]
|
||||||
|
|
||||||
if sample_rate != self._human.get_audio_sample_rate() and stream.shape[0] > 0:
|
if sample_rate != self._human.get_audio_sample_rate() and stream.shape[0] > 0:
|
||||||
logger.warning(f'tts audio sample rate is {sample_rate}, resample to {self._human.get_audio_sample_rate() }')
|
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self._human.get_audio_sample_rate()}.')
|
||||||
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self._human.get_audio_sample_rate())
|
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self._human.get_audio_sample_rate())
|
||||||
|
|
||||||
return stream
|
return stream
|
||||||
|
|
||||||
async def __on_request(self, voice, txt):
|
async def __main(self, voicename: str, text: str):
|
||||||
communicate = edge_tts.Communicate(txt, voice)
|
communicate = edge_tts.Communicate(text, voicename)
|
||||||
|
|
||||||
|
#with open(OUTPUT_FILE, "wb") as file:
|
||||||
first = True
|
first = True
|
||||||
total_data = b''
|
|
||||||
CHUNK_SIZE = self._chunk_len
|
|
||||||
async for chunk in communicate.stream():
|
async for chunk in communicate.stream():
|
||||||
if chunk["type"] == "audio" and chunk["data"]:
|
if first:
|
||||||
data = chunk['data']
|
first = False
|
||||||
self._io_stream.write(data)
|
if chunk["type"] == "audio":
|
||||||
|
#self.push_audio(chunk["data"])
|
||||||
|
self.input_stream.write(chunk["data"])
|
||||||
|
#file.write(chunk["data"])
|
||||||
elif chunk["type"] == "WordBoundary":
|
elif chunk["type"] == "WordBoundary":
|
||||||
pass
|
pass
|
||||||
'''
|
|
||||||
total_data += chunk["data"]
|
|
||||||
if len(total_data) >= CHUNK_SIZE:
|
|
||||||
# print(f"Time elapsed: {time.time() - start_time:.2f} seconds") # Print time
|
|
||||||
audio_data = AudioSegment.from_mp3(BytesIO(total_data[:CHUNK_SIZE])) #.raw_data
|
|
||||||
audio_data = audio_data.set_frame_rate(self._human.get_audio_sample_rate())
|
|
||||||
# self._human.push_audio_chunk(audio_data)
|
|
||||||
self._pcm_stream.write(audio_data.raw_data)
|
|
||||||
# play_audio(total_data[:CHUNK_SIZE], stream) # Play first CHUNK_SIZE bytes
|
|
||||||
total_data = total_data[CHUNK_SIZE:] # Remove played data
|
|
||||||
'''
|
|
||||||
|
|
||||||
# if first:
|
|
||||||
# first = False
|
|
||||||
|
|
||||||
# if chuck['type'] == 'audio':
|
|
||||||
# # self._io_stream.write(chuck['data'])
|
|
||||||
# self._io_stream.write(AudioSegment.from_mp3(BytesIO(total_data[:CHUNK_SIZE])).raw_data)
|
|
||||||
|
|
||||||
# if len(total_data) > 0:
|
|
||||||
# self._pcm_stream.write(AudioSegment.from_mp3(BytesIO(total_data)).raw_data)
|
|
||||||
# audio_data = AudioSegment.from_mp3(BytesIO(total_data)) # .raw_data
|
|
||||||
# audio_data = audio_data.set_frame_rate(self._human.get_audio_sample_rate())
|
|
||||||
# self._pcm_stream.write(audio_data.raw_data)
|
|
||||||
# self._human.push_audio_chunk(audio_data)
|
|
||||||
# self._io_stream.write(AudioSegment.from_mp3(BytesIO(total_data)).raw_data)
|
|
||||||
|
|
||||||
def stop(self):
|
def stop(self):
|
||||||
self._pcm_stream.stop_stream()
|
self._pcm_stream.stop_stream()
|
||||||
|
4
ui.py
4
ui.py
@ -44,7 +44,7 @@ class App(customtkinter.CTk):
|
|||||||
# self.logo_label.grid(row=0, column=0, padx=20, pady=(20, 10))
|
# self.logo_label.grid(row=0, column=0, padx=20, pady=(20, 10))
|
||||||
|
|
||||||
self.entry = customtkinter.CTkEntry(self, placeholder_text="输入内容")
|
self.entry = customtkinter.CTkEntry(self, placeholder_text="输入内容")
|
||||||
self.entry.insert(0, "基本信息,北京九零科技有限公司,成立于2015年,位于北京市,是一家以从事科技推广和应用服务业为主的企业。企业注册资本500万人民币。")
|
self.entry.insert(0, "你好,我是中国湘西人。")
|
||||||
self.entry.grid(row=2, column=0, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew")
|
self.entry.grid(row=2, column=0, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew")
|
||||||
|
|
||||||
self.main_button_1 = customtkinter.CTkButton(master=self, fg_color="transparent", border_width=2,
|
self.main_button_1 = customtkinter.CTkButton(master=self, fg_color="transparent", border_width=2,
|
||||||
@ -83,7 +83,7 @@ class App(customtkinter.CTk):
|
|||||||
self.after(100, self._render)
|
self.after(100, self._render)
|
||||||
return
|
return
|
||||||
|
|
||||||
self.play_audio()
|
# self.play_audio()
|
||||||
iheight, iwidth = image.shape[0], image.shape[1]
|
iheight, iwidth = image.shape[0], image.shape[1]
|
||||||
width = self.winfo_width()
|
width = self.winfo_width()
|
||||||
height = self.winfo_height()
|
height = self.winfo_height()
|
||||||
|
10
utils.py
10
utils.py
@ -10,3 +10,13 @@ def read_files_path(path):
|
|||||||
file_paths.append(path + file)
|
file_paths.append(path + file)
|
||||||
return file_paths
|
return file_paths
|
||||||
|
|
||||||
|
|
||||||
|
def mirror_index(size, index):
|
||||||
|
# size = len(self.coord_list_cycle)
|
||||||
|
turn = index // size
|
||||||
|
res = index % size
|
||||||
|
if turn % 2 == 0:
|
||||||
|
return res
|
||||||
|
else:
|
||||||
|
return size - res - 1
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user