modify human and tts

This commit is contained in:
brige 2024-10-04 01:52:49 +08:00
parent a68fbbc0de
commit 1ef9225dda
7 changed files with 293 additions and 207 deletions

111
Human.py
View File

@ -1,4 +1,5 @@
#encoding = utf8
import copy
import io
import logging
@ -25,6 +26,7 @@ from queue import Queue
from tts.EdgeTTS import EdgeTTS
from tts.TTSBase import TTSBase
from utils import mirror_index
device = 'cuda' if torch.cuda.is_available() else 'cpu'
@ -62,16 +64,6 @@ def read_images(img_list):
return frames
def __mirror_index(size, index):
# size = len(self.coord_list_cycle)
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1
# python.exe .\inference.py --checkpoint_path .\checkpoints\wav2lip.pth --face
# .\face\img00016.jpg --audio .\audio\audio1.wav
def inference(render_event, batch_size, face_images_path, audio_feat_queue, audio_out_queue, res_frame_queue):
@ -111,13 +103,13 @@ def inference(render_event, batch_size, face_images_path, audio_feat_queue, audi
print(f'is_all_silence {is_all_silence}')
if is_all_silence:
for i in range(batch_size):
res_frame_queue.put((None, __mirror_index(length, index), audio_frames[i*2:i*2+2]))
res_frame_queue.put((None, mirror_index(length, index), audio_frames[i*2:i*2+2]))
index = index + 1
else:
t = time.perf_counter()
image_batch = []
for i in range(batch_size):
idx = __mirror_index(length, index + i)
idx = mirror_index(length, index + i)
face = face_list_cycle[idx]
image_batch.append(face)
image_batch, mel_batch = np.asarray(image_batch), np.asarray(mel_batch)
@ -143,7 +135,7 @@ def inference(render_event, batch_size, face_images_path, audio_feat_queue, audi
count_time = 0
for i, res_frame in enumerate(pred):
res_frame_queue.put((res_frame, __mirror_index(length, index), audio_frames[i*2 : i*2+2]))
res_frame_queue.put((res_frame, mirror_index(length, index), audio_frames[i*2 : i*2+2]))
index = index + 1
logging.info('finish inference')
@ -212,7 +204,7 @@ def datagen(frames, mels):
# for i, m in enumerate(mels):
for i in range(mels.qsize()):
idx = 0 if True else i%len(frames)
frame_to_save = frames[__mirror_index(1, i)].copy()
frame_to_save = frames[mirror_index(1, i)].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
@ -294,7 +286,7 @@ def load_audio_from_bytes(byte_data):
class Human:
def __init__(self):
self._fps = 25 # 40 ms per frame
self._fps = 50 # 20 ms per frame
self._batch_size = 16
self._sample_rate = 16000
self._stride_left_size = 10
@ -303,17 +295,27 @@ class Human:
self._output_queue = mp.Queue()
self._res_frame_queue = mp.Queue(self._batch_size * 2)
self._chunk_2_mal = Chunk2Mal(self)
self._tts = TTSBase(self)
self._infer = Infer(self)
full_images, face_frames, coord_frames = self._avatar()
self._frame_list_cycle = full_images
self._face_list_cycle = face_frames
self._coord_list_cycle = coord_frames
face_images_length = len(self._face_list_cycle)
logging.info(f'face images length: {face_images_length}')
print(f'face images length: {face_images_length}')
self.mel_chunks_queue_ = Queue()
self.audio_chunks_queue_ = Queue()
self._test_image_queue = Queue()
#
self._thread = None
thread = threading.Thread(target=self.test)
thread.start()
self._res_render_queue = Queue()
self._chunk_2_mal = Chunk2Mal(self)
self._tts = TTSBase(self)
self._infer = Infer(self)
# #
# self._thread = None
# thread = threading.Thread(target=self.test)
# thread.start()
# self.test()
# self.play_pcm()
@ -339,6 +341,21 @@ class Human:
# stream.close()
# p.terminate()
def _avatar(self):
face_images_path = r'./face/'
face_images_path = utils.read_files_path(face_images_path)
full_list_cycle = read_images(face_images_path)
face_det_results = face_detect(full_list_cycle)
face_frames = []
coord_frames = []
for face, coord in face_det_results:
face_frames.append(face)
coord_frames.append(coord)
return full_list_cycle, face_frames, coord_frames
def inter(self, model, chunks, face_list_cycle, face_det_results, out, j):
inputs = np.concatenate(chunks) # [5 * chunk]
mel = audio.melspectrogram(inputs)
@ -445,9 +462,11 @@ class Human:
'temp/resul_tttt.mp4')
subprocess.call(command, shell=platform.system() != 'Windows')
# gen = datagen(face_list_cycle, self.mel_chunks_queue_)
def get_face_list_cycle(self):
return self._face_list_cycle
def get_fps(self):
return self._fps
@ -476,12 +495,20 @@ class Human:
return
self._tts.push_txt(txt)
def push_audio_chunk(self, audio_chunk):
self._chunk_2_mal.push_chunk(audio_chunk)
def put_audio_frame(self, audio_chunk):
self._chunk_2_mal.put_audio_frame(audio_chunk)
def push_mel_chunks_queue(self, mel_chunk):
self._infer.push(mel_chunk)
# self.audio_chunks_queue_.put(audio_chunk)
# def push_audio_chunk(self, audio_chunk):
# self._chunk_2_mal.push_chunk(audio_chunk)
def push_mel_chunks(self, mel_chunks):
self._infer.push(mel_chunks)
def push_out_put(self, frame, type_):
self._infer.push_out_queue(frame, type_)
def push_mel_chunks_queue(self, audio_chunk):
self.audio_chunks_queue_.put(audio_chunk)
def push_feat_queue(self, mel_chunks):
print("push_feat_queue")
@ -493,14 +520,38 @@ class Human:
def push_render_image(self, image):
self._test_image_queue.put(image)
def push_res_frame(self, res_frame, idx, audio_frames):
self._res_render_queue.put((res_frame, idx, audio_frames))
def render(self):
try:
# img, aud = self._res_frame_queue.get(block=True, timeout=.3)
img = self._test_image_queue.get(block=True, timeout=.3)
# img = self._test_image_queue.get(block=True, timeout=.3)
res_frame, idx, audio_frames = self._res_render_queue.get(block=True, timeout=.3)
except queue.Empty:
# print('render queue.Empty:')
return None
return img
if audio_frames[0][1] != 0 and audio_frames[1][1] != 0:
combine_frame = self._frame_list_cycle[idx]
else:
bbox = self._coord_list_cycle[idx]
combine_frame = copy.deepcopy(self._frame_list_cycle[idx])
y1, y2, x1, x2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1))
except:
return None
# combine_frame = get_image(ori_frame,res_frame,bbox)
# t=time.perf_counter()
combine_frame[y1:y2, x1:x2] = res_frame
image = combine_frame
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image
# print('blending time:',time.perf_counter()-t)
# def pull_audio_chunk(self):
# try:

View File

@ -11,8 +11,8 @@ import torch
from tqdm import tqdm
import face_detection
import utils
from models import Wav2Lip
from utils import mirror_index
logger = logging.getLogger(__name__)
@ -147,7 +147,8 @@ def datagen_signal(frame, mel, face_det_results):
class Infer:
def __init__(self, human):
self._human = human
self._queue = Queue()
self._feat_queue = Queue()
self._audio_out_queue = Queue()
self._exit_event = Event()
self._run_thread = Thread(target=self.__on_run)
@ -155,17 +156,17 @@ class Infer:
self._run_thread.start()
def __on_run(self):
face_images_path = r'./face/'
face_images_path = utils.read_files_path(face_images_path)
face_list_cycle = read_images(face_images_path)
face_images_length = len(face_list_cycle)
logging.info(f'face images length: {face_images_length}')
print(f'face images length: {face_images_length}')
model = load_model(r'.\checkpoints\wav2lip.pth')
print("Model loaded")
face_list_cycle = self._human.get_face_list_cycle()
# self.__do_run1(face_list_cycle, model)
self.__do_run2(face_list_cycle, model)
# frame_h, frame_w = face_list_cycle[0].shape[:-1]
def __do_run1(self, face_list_cycle, model):
face_det_results = face_detect(face_list_cycle)
j = 0
@ -173,7 +174,7 @@ class Infer:
count = 0
while self._exit_event.is_set():
try:
m = self._queue.get(block=True, timeout=1)
m = self._feat_queue.get(block=True, timeout=1)
except queue.Empty:
continue
@ -202,5 +203,77 @@ class Infer:
# out.write(f)
# print('infer count:', count)
def push(self, chunk):
self._queue.put(chunk)
def __do_run2(self, face_list_cycle, model):
length = len(face_list_cycle)
index = 0
count = 0
count_time = 0
print('start inference')
while True:
if self._exit_event.is_set():
start_time = time.perf_counter()
try:
mel_batch = self._feat_queue.get(block=True, timeout=1)
except queue.Empty:
continue
is_all_silence = True
audio_frames = []
for _ in range(self._human.get_batch_size() * 2):
frame, type_ = self._audio_out_queue.get()
audio_frames.append((frame, type_))
if type_ == 0:
is_all_silence = False
if is_all_silence:
for i in range(self._human.get_batch_size()):
# res_frame_queue.put((None, mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
self._human.push_res_frame(None, mirror_index(length, index), audio_frames[i * 2:i * 2 + 2])
index = index + 1
else:
print('infer=======')
t = time.perf_counter()
img_batch = []
for i in range(self._human.get_batch_size()):
idx = mirror_index(length, index + i)
face = face_list_cycle[idx]
img_batch.append(face)
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, face.shape[0] // 2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
count_time += (time.perf_counter() - t)
count += self._human.batch_size()
# _totalframe += 1
if count >= 100:
print(f"------actual avg infer fps:{count / count_time:.4f}")
count = 0
count_time = 0
for i, res_frame in enumerate(pred):
# self.__pushmedia(res_frame,loop,audio_track,video_track)
# res_frame_queue.put(
# (res_frame, __mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
self._human.push_res_frame(res_frame, mirror_index(length, index),
audio_frames[i * 2:i * 2 + 2])
index = index + 1
# print('total batch time:',time.perf_counter()-start_time)
else:
time.sleep(1)
print('musereal inference processor stop')
def push(self, mel_chunks):
self._feat_queue.put(mel_chunks)
def push_out_queue(self, frame, type_):
self._audio_out_queue.put((frame, type_))

View File

@ -1,9 +1,10 @@
#encoding = utf8
import ctypes
import logging
import queue
import time
from queue import Queue
import multiprocessing as mp
from threading import Thread, Event
import numpy as np
@ -13,90 +14,69 @@ from audio_render import AudioRender
class Chunk2Mal:
def __init__(self, human):
self._audio_chunk_queue = Queue()
# self._audio_chunk_queue = Queue()
self._human = human
self._thread = None
self._chunks = []
self._audio_chunks = []
self.frames = []
self.queue = Queue()
# self.output_queue = mp.Queue()
# self.feat_queue = mp.Queue(2)
# 320 samples per chunk (20ms * 16000 / 1000)audio_chunk
self._chunk_len = self._human.get_audio_sample_rate() // self._human.get_fps()
self.chunk = self._human.get_audio_sample_rate() // self._human.get_fps()
self._exit_event = Event()
self._thread = Thread(target=self._on_run)
self._exit_event.set()
self._thread.start()
self._audio_render = AudioRender()
# self._audio_render = AudioRender()
self._stream_len = 0
logging.info('chunk2mal start')
def _concatenate(self):
logging.info('np.concatenate')
if len(self._chunks) < 3:
logging.info(f'np.concatenate: {len(self._chunks)}')
return
inputs = np.concatenate(self._chunks) # [5 * chunk]
self._chunks = []
mel = audio.melspectrogram(inputs)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError(
'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_step_size = 16
# print('fps:', self._human.get_fps())
mel_idx_multiplier = 80. / self._human.get_fps()
# print('mel_idx_multiplier:', mel_idx_multiplier)
count = 0
i = 0
while 1:
count = count + 1
start_idx = int(i * mel_idx_multiplier)
print('i', i, 'start_idx', start_idx, 'mel len:', len(mel[0]))
if start_idx + mel_step_size > len(mel[0]):
self._human.push_mel_chunks_queue(mel[:, len(mel[0]) - mel_step_size:])
break
self._human.push_mel_chunks_queue(mel[:, start_idx: start_idx + mel_step_size])
i += 1
# wav = np.concatenate(self._audio_chunks) # [5 * chunk]self._audio_chunks
# print('_concatenate', len(wav))
# audio.save_chunks([wav], 16000, "./temp/audio/")
# wav *= 32767 / max(0.01, np.max(np.abs(wav)))
# wav = wav.astype(np.int16)
# self._audio_render.write(wav, len(wav))
self._audio_chunks = []
print('mel_chunks count:', count)
def _on_run(self):
logging.info('chunk2mal run')
while self._exit_event.is_set():
if self._audio_chunk_queue.empty():
if len(self._chunks) > 0:
self._concatenate()
else:
time.sleep(0.5)
continue
try:
chunk = self._audio_chunk_queue.get(block=True, timeout=1)
self._chunks.append(chunk)
self._stream_len = self._stream_len + len(chunk)
print('Chunk2Mal _stream_len:', self._stream_len)
self._audio_chunks.append(chunk.copy())
# self._human.push_audio_frames(chunk, 0)
if len(self._chunks) < 10: # 200ms
continue
except queue.Empty:
# print('Chunk2Mal queue.Empty')
continue
print('len(self._chunks):', len(self._chunks))
self._concatenate()
self._run_step()
time.sleep(0.01)
logging.info('chunk2mal exit')
def _run_step(self):
for _ in range(self._human.get_batch_size() * 2):
frame, _type = self.get_audio_frame()
self.frames.append(frame)
# put to output
self._human.push_out_put(frame, _type)
# self.output_queue.put((frame, _type))
# context not enough, do not run network.
if len(self.frames) <= self._human.get_stride_left_size() + self._human.get_stride_right_size():
return
inputs = np.concatenate(self.frames) # [N * chunk]
mel = audio.melspectrogram(inputs)
# print(mel.shape[0],mel.shape,len(mel[0]),len(self.frames))
# cut off stride
left = max(0, self._human.get_stride_left_size() * 80 / 50)
right = min(len(mel[0]), len(mel[0]) - self._human.get_stride_right_size() * 80 / 50)
mel_idx_multiplier = 80. * 2 / self._human.get_fps()
mel_step_size = 16
i = 0
mel_chunks = []
while i < (len(self.frames) - self._human.get_stride_left_size() - self._human.get_stride_right_size()) / 2:
start_idx = int(left + i * mel_idx_multiplier)
# print(start_idx)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
else:
mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size])
i += 1
self._human.push_mel_chunks(mel_chunks)
# self.feat_queue.put(mel_chunks)
# discard the old part to save memory
self.frames = self.frames[-(self._human.get_stride_left_size() + self._human.get_stride_right_size()):]
def stop(self):
if self._exit_event is None:
return
@ -106,15 +86,34 @@ class Chunk2Mal:
self._thread.join()
logging.info('chunk2mal stop')
def push_chunk(self, chunk):
self._audio_chunk_queue.put(chunk)
def pause_talk(self):
self.queue.queue.clear()
def pull_chunk(self):
def put_audio_frame(self, audio_chunk): #16khz 20ms pcm
self.queue.put(audio_chunk)
def get_audio_frame(self):
try:
chunk = self._audio_chunk_queue.get(block=True, timeout=1)
type = 1
except queue.Empty:
chunk = np.zeros(self._chunk_len, dtype=np.float32)
frame = self.queue.get(block=True, timeout=0.01)
type = 0
return chunk, type
# print(f'[INFO] get frame {frame.shape}')
except queue.Empty:
frame = np.zeros(self.chunk, dtype=np.float32)
type = 1
return frame, type
def get_audio_out(self): # get origin audio pcm to nerf
return self.output_queue.get()
def warm_up(self):
for _ in range(self._human.get_stride_left_size() + self._human.get_stride_right_size()):
audio_frame, _type = self.get_audio_frame()
self.frames.append(audio_frame)
self.output_queue.put((audio_frame, type))
for _ in range(self._human.get_stride_right_size()):
self.output_queue.get()
def get_next_feat(self, block, timeout):
return self.feat_queue.get(block, timeout)

View File

@ -27,6 +27,7 @@ class EdgeTTS(TTSBase):
stream = self.__create_bytes_stream(self._io_stream)
stream_len = stream.shape[0]
index = 0
while stream_len >= self._chunk:
self._human.push_audio_chunk(stream[index:index + self._chunk])
stream_len -= self._chunk
@ -56,4 +57,3 @@ class EdgeTTS(TTSBase):
if chuck['type'] == 'audio':
self._io_stream.write(chuck['data'])

View File

@ -5,9 +5,7 @@ import time
import edge_tts
import numpy as np
import pyaudio
import soundfile
import sounddevice
import soundfile as sf
import resampy
import queue
from io import BytesIO
@ -16,7 +14,6 @@ from threading import Thread, Event
import audio
from audio_render import AudioRender
logger = logging.getLogger(__name__)
@ -26,17 +23,13 @@ class TTSBase:
self._human = human
self._thread = None
self._queue = Queue()
self._io_stream = BytesIO()
self._chunk_len = self._human.get_audio_sample_rate() // self._human.get_fps()
self.input_stream = BytesIO()
self.chunk = self._human.get_audio_sample_rate() // self._human.get_fps()
self._exit_event = Event()
self._thread = Thread(target=self._on_run)
self._exit_event.set()
self._thread.start()
# self._pcm_player = pyaudio.PyAudio()
# self._pcm_stream = self._pcm_player.open(format=pyaudio.paInt16,
# channels=1, rate=24000, output=True)
# self._audio_render = AudioRender()
logging.info('tts start')
def _on_run(self):
@ -52,94 +45,54 @@ class TTSBase:
def _request(self, txt):
voice = 'zh-CN-XiaoyiNeural'
t = time.time()
asyncio.new_event_loop().run_until_complete(self.__on_request(voice, txt))
logger.info(f'edge tts time:{time.time() - t : 0.4f}s')
asyncio.new_event_loop().run_until_complete(self.__main(voice, txt))
print(f'-------edge tts time:{time.time() - t:.4f}s')
self._io_stream.seek(0)
stream = self.__create_bytes_stream(self._io_stream)
audio.save_chunks([stream], 16000, './temp/audio/')
# wav = audio.split_audio(stream, 16000, 0.04)
self.input_stream.seek(0)
stream = self.__create_bytes_stream(self.input_stream)
streamlen = stream.shape[0]
idx = 0
print('-------tts start push chunk')
while streamlen >= self.chunk:
self._human.put_audio_frame(stream[idx:idx + self.chunk])
streamlen -= self.chunk
idx += self.chunk
# if streamlen>0: #skip last frame(not 20ms)
# self.queue.put(stream[idx:])
self.input_stream.seek(0)
self.input_stream.truncate()
print('-------tts finish push chunk')
# audio.save_chunks(wav, 16000, './temp/audio/')
# audio.save_wav(stream, "./temp/audio/test1.wav", 16000)
stream_len = stream.shape[0]
# wav = stream #np.concatenate(stream) # [5 * chunk]self._audio_chunks
# print('_concatenate', len(wav))
# self._audio_chunks = []
print("stream_len:", stream_len, " _chunk_len:", self._chunk_len)
index = 0
segment = 0
while stream_len >= self._chunk_len:
audio_chunk = stream[index:index + self._chunk_len]
self._human.push_audio_chunk(audio_chunk)
stream_len -= self._chunk_len
index += self._chunk_len
segment = segment + 1
if stream_len > 0:
audio_chunk = stream[index:index + stream_len]
self._human.push_audio_chunk(audio_chunk)
segment = segment + 1
print("segment:", segment)
self._io_stream.seek(0)
self._io_stream.truncate()
def __create_bytes_stream(self, io_stream):
stream, sample_rate = soundfile.read(io_stream)
logger.info(f'tts audio stream {sample_rate} : {stream.shape}')
def __create_bytes_stream(self, byte_stream):
# byte_stream=BytesIO(buffer)
stream, sample_rate = sf.read(byte_stream) # [T*sample_rate,] float64
print(f'[INFO]tts audio stream {sample_rate}: {stream.shape}')
stream = stream.astype(np.float32)
if stream.ndim > 1:
logger.warning(f'tts audio has {stream.shape[1]} channels, only use the first')
stream = stream[:, 1]
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
stream = stream[:, 0]
if sample_rate != self._human.get_audio_sample_rate() and stream.shape[0] > 0:
logger.warning(f'tts audio sample rate is {sample_rate}, resample to {self._human.get_audio_sample_rate() }')
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self._human.get_audio_sample_rate()}.')
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self._human.get_audio_sample_rate())
return stream
async def __on_request(self, voice, txt):
communicate = edge_tts.Communicate(txt, voice)
async def __main(self, voicename: str, text: str):
communicate = edge_tts.Communicate(text, voicename)
#with open(OUTPUT_FILE, "wb") as file:
first = True
total_data = b''
CHUNK_SIZE = self._chunk_len
async for chunk in communicate.stream():
if chunk["type"] == "audio" and chunk["data"]:
data = chunk['data']
self._io_stream.write(data)
if first:
first = False
if chunk["type"] == "audio":
#self.push_audio(chunk["data"])
self.input_stream.write(chunk["data"])
#file.write(chunk["data"])
elif chunk["type"] == "WordBoundary":
pass
'''
total_data += chunk["data"]
if len(total_data) >= CHUNK_SIZE:
# print(f"Time elapsed: {time.time() - start_time:.2f} seconds") # Print time
audio_data = AudioSegment.from_mp3(BytesIO(total_data[:CHUNK_SIZE])) #.raw_data
audio_data = audio_data.set_frame_rate(self._human.get_audio_sample_rate())
# self._human.push_audio_chunk(audio_data)
self._pcm_stream.write(audio_data.raw_data)
# play_audio(total_data[:CHUNK_SIZE], stream) # Play first CHUNK_SIZE bytes
total_data = total_data[CHUNK_SIZE:] # Remove played data
'''
# if first:
# first = False
# if chuck['type'] == 'audio':
# # self._io_stream.write(chuck['data'])
# self._io_stream.write(AudioSegment.from_mp3(BytesIO(total_data[:CHUNK_SIZE])).raw_data)
# if len(total_data) > 0:
# self._pcm_stream.write(AudioSegment.from_mp3(BytesIO(total_data)).raw_data)
# audio_data = AudioSegment.from_mp3(BytesIO(total_data)) # .raw_data
# audio_data = audio_data.set_frame_rate(self._human.get_audio_sample_rate())
# self._pcm_stream.write(audio_data.raw_data)
# self._human.push_audio_chunk(audio_data)
# self._io_stream.write(AudioSegment.from_mp3(BytesIO(total_data)).raw_data)
def stop(self):
self._pcm_stream.stop_stream()

4
ui.py
View File

@ -44,7 +44,7 @@ class App(customtkinter.CTk):
# self.logo_label.grid(row=0, column=0, padx=20, pady=(20, 10))
self.entry = customtkinter.CTkEntry(self, placeholder_text="输入内容")
self.entry.insert(0, "基本信息,北京九零科技有限公司成立于2015年位于北京市是一家以从事科技推广和应用服务业为主的企业。企业注册资本500万人民币")
self.entry.insert(0, "你好,我是中国湘西人")
self.entry.grid(row=2, column=0, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew")
self.main_button_1 = customtkinter.CTkButton(master=self, fg_color="transparent", border_width=2,
@ -83,7 +83,7 @@ class App(customtkinter.CTk):
self.after(100, self._render)
return
self.play_audio()
# self.play_audio()
iheight, iwidth = image.shape[0], image.shape[1]
width = self.winfo_width()
height = self.winfo_height()

View File

@ -10,3 +10,13 @@ def read_files_path(path):
file_paths.append(path + file)
return file_paths
def mirror_index(size, index):
# size = len(self.coord_list_cycle)
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1