add support 256

This commit is contained in:
jiegeaiai 2024-11-21 00:30:15 +08:00
parent f86368bc37
commit c0d6e01b23
8 changed files with 234 additions and 9 deletions

View File

@ -59,7 +59,9 @@ class AudioInferenceHandler(AudioHandler):
super().on_message(message) super().on_message(message)
def __on_run(self): def __on_run(self):
wav2lip_path = os.path.join(current_file_path, '..', 'checkpoints', 'wav2lip.pth') # wav2lip_path = os.path.join(current_file_path, '..', 'checkpoints', 'wav2lip.pth')
wav2lip_path = os.path.join(current_file_path, '..', 'checkpoints', 'weights', 'wav2lip',
'ema_checkpoint_step000300000.pth')
logger.info(f'AudioInferenceHandler init, path:{wav2lip_path}') logger.info(f'AudioInferenceHandler init, path:{wav2lip_path}')
model = load_model(wav2lip_path) model = load_model(wav2lip_path)
logger.info("Model loaded") logger.info("Model loaded")
@ -130,7 +132,7 @@ class AudioInferenceHandler(AudioHandler):
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
print('img_batch:', img_batch.shape, 'mel_batch:', mel_batch.shape) # print('img_batch:', img_batch.shape, 'mel_batch:', mel_batch.shape)
with torch.no_grad(): with torch.no_grad():
pred = model(mel_batch, img_batch) pred = model(mel_batch, img_batch)

View File

@ -79,7 +79,7 @@ class AudioMalHandler(AudioHandler):
mel = melspectrogram(inputs) mel = melspectrogram(inputs)
# print(mel.shape[0],mel.shape,len(mel[0]),len(self.frames)) # print(mel.shape[0],mel.shape,len(mel[0]),len(self.frames))
# cut off stride # cut off stride
left = max(0, self._context.stride_left_size * 80 / 50) left = max(0, self._context.stride_left_size * 80 / self._context.fps)
right = min(len(mel[0]), len(mel[0]) - self._context.stride_right_size * 80 / 50) right = min(len(mel[0]), len(mel[0]) - self._context.stride_right_size * 80 / 50)
mel_idx_multiplier = 80. * 2 / self._context.fps mel_idx_multiplier = 80. * 2 / self._context.fps
mel_step_size = 16 mel_step_size = 16

View File

@ -17,7 +17,7 @@ current_file_path = os.path.dirname(os.path.abspath(__file__))
class HumanContext: class HumanContext:
def __init__(self): def __init__(self):
self._fps = 50 # 20 ms per frame self._fps = 25 # 20 ms per frame
self._image_size = 288 self._image_size = 288
self._batch_size = 16 self._batch_size = 16
self._sample_rate = 16000 self._sample_rate = 16000
@ -39,7 +39,7 @@ class HumanContext:
logger.info(f'base path:{base_path}') logger.info(f'base path:{base_path}')
# full_images, face_frames, coord_frames = load_avatar(base_path, self._image_size, self._device) # full_images, face_frames, coord_frames = load_avatar(base_path, self._image_size, self._device)
full_images, face_frames, coord_frames = load_avatar_from_processed(base_path, full_images, face_frames, coord_frames = load_avatar_from_processed(base_path,
'wav2lip_avatar2') 'wav2lip_avatar3')
self._frame_list_cycle = full_images self._frame_list_cycle = full_images
self._face_list_cycle = face_frames self._face_list_cycle = face_frames
self._coord_list_cycle = coord_frames self._coord_list_cycle = coord_frames

View File

@ -50,7 +50,7 @@ class HumanRender(AudioHandler):
# t = time.time() # t = time.time()
self._run_step() self._run_step()
# delay = time.time() - t # delay = time.time() - t
delay = 0.038 # - delay delay = 0.04 # - delay
# print(delay) # print(delay)
# if delay <= 0.0: # if delay <= 0.0:
# continue # continue

View File

@ -2,3 +2,4 @@
from .wav2lip import Wav2Lip, Wav2Lip_disc_qual from .wav2lip import Wav2Lip, Wav2Lip_disc_qual
from .syncnet import SyncNet_color from .syncnet import SyncNet_color
from .wav2lip_v2 import Wav2LipV2

View File

@ -5,6 +5,7 @@ import math
from .conv import Conv2dTranspose, Conv2d, nonorm_Conv2d from .conv import Conv2dTranspose, Conv2d, nonorm_Conv2d
class Wav2Lip(nn.Module): class Wav2Lip(nn.Module):
def __init__(self): def __init__(self):
super(Wav2Lip, self).__init__() super(Wav2Lip, self).__init__()

221
models/wav2lip_v2.py Normal file
View File

@ -0,0 +1,221 @@
import torch
from torch import nn
from .conv import Conv2dTranspose, Conv2d, nonorm_Conv2d
class Wav2LipV2(nn.Module):
def __init__(self):
super(Wav2LipV2, self).__init__()
self.face_encoder_blocks = nn.ModuleList([
nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3)),
nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ),
nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ),
nn.Sequential(Conv2d(512, 512, kernel_size=4, stride=1, padding=0),
Conv2d(512, 512, kernel_size=1, stride=1, padding=0)), ])
self.audio_encoder = nn.Sequential(
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
Conv2d(512, 512, kernel_size=1, stride=1, padding=0), )
self.face_decoder_blocks = nn.ModuleList([
nn.Sequential(Conv2d(512, 512, kernel_size=1, stride=1, padding=0), ),
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=4, stride=1, padding=0),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ),
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ),
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), ),
nn.Sequential(Conv2dTranspose(768, 384, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True), ),
nn.Sequential(Conv2dTranspose(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), ),
nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), ),
nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), ), ])
self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1),
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
nn.Sigmoid())
def audio_forward(self, audio_sequences, a_alpha=1.):
audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
if a_alpha != 1.:
audio_embedding *= a_alpha
return audio_embedding
def inference(self, audio_embedding, face_sequences):
feats = []
x = face_sequences
for f in self.face_encoder_blocks:
x = f(x)
feats.append(x)
x = audio_embedding
for f in self.face_decoder_blocks:
x = f(x)
try:
x = torch.cat((x, feats[-1]), dim=1)
except Exception as e:
print(x.size())
print(feats[-1].size())
raise e
feats.pop()
x = self.output_block(x)
outputs = x
return outputs
def forward(self, audio_sequences, face_sequences, a_alpha=1.):
# audio_sequences = (B, T, 1, 80, 16)
B = audio_sequences.size(0)
input_dim_size = len(face_sequences.size())
if input_dim_size > 4:
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)#[bz, 5, 1, 80, 16]->[bz*5, 1, 80, 16]
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)#[bz, 6, 5, 256, 256]->[bz*5, 6, 256, 256]
audio_embedding = self.audio_encoder(audio_sequences) # [bz*5, 1, 80, 16]->[bz*5, 512, 1, 1]
if a_alpha != 1.:
audio_embedding *= a_alpha #放大音频强度
feats = []
x = face_sequences
for f in self.face_encoder_blocks:
x = f(x)
feats.append(x)
x = audio_embedding
for f in self.face_decoder_blocks:
x = f(x)
try:
x = torch.cat((x, feats[-1]), dim=1)
except Exception as e:
print(x.size())
print(feats[-1].size())
raise e
feats.pop()
x = self.output_block(x) #[bz*5, 80, 256, 256]->[bz*5, 3, 256, 256]
if input_dim_size > 4: #[bz*5, 3, 256, 256]->[B, 3, 5, 256, 256]
x = torch.split(x, B, dim=0)
outputs = torch.stack(x, dim=2)
else:
outputs = x
return outputs
class Wav2Lip_disc_qual(nn.Module):
def __init__(self):
super(Wav2Lip_disc_qual, self).__init__()
self.face_encoder_blocks = nn.ModuleList([
nn.Sequential(nonorm_Conv2d(3, 32, kernel_size=7, stride=1, padding=3)),
nn.Sequential(nonorm_Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=2),
nonorm_Conv2d(64, 64, kernel_size=5, stride=1, padding=2)),
nn.Sequential(nonorm_Conv2d(64, 128, kernel_size=5, stride=2, padding=2),
nonorm_Conv2d(128, 128, kernel_size=5, stride=1, padding=2)),
nn.Sequential(nonorm_Conv2d(128, 256, kernel_size=5, stride=2, padding=2),
nonorm_Conv2d(256, 256, kernel_size=5, stride=1, padding=2)),
nn.Sequential(nonorm_Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1)),
nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1), ),
nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1), ),
nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=4, stride=1, padding=0),
nonorm_Conv2d(512, 512, kernel_size=1, stride=1, padding=0)), ])
self.binary_pred = nn.Sequential(nn.Conv2d(512, 1, kernel_size=1, stride=1, padding=0), nn.Sigmoid())
self.label_noise = .0
def get_lower_half(self, face_sequences): #取得输入图片的下半部分。
return face_sequences[:, :, face_sequences.size(2) // 2:]
def to_2d(self, face_sequences): #将输入的图片序列连接起来形成一个二维的tensor。
B = face_sequences.size(0)
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
return face_sequences
def perceptual_forward(self, false_face_sequences): #前传生成图像
false_face_sequences = self.to_2d(false_face_sequences) #[bz, 3, 5, 256, 256]->[bz*5, 3, 256, 256]
false_face_sequences = self.get_lower_half(false_face_sequences)#[bz*5, 3, 256, 256]->[bz*5, 3, 128, 256]
false_feats = false_face_sequences
for f in self.face_encoder_blocks: #[bz*5, 3, 128, 256]->[bz*5, 512, 1, 1]
false_feats = f(false_feats)
return self.binary_pred(false_feats).view(len(false_feats), -1) #[bz*5, 512, 1, 1]->[bz*5, 1, 1]
def forward(self, face_sequences): #前传真值图像
face_sequences = self.to_2d(face_sequences)
face_sequences = self.get_lower_half(face_sequences)
x = face_sequences
for f in self.face_encoder_blocks:
x = f(x)
return self.binary_pred(x).view(len(x), -1)

View File

@ -11,7 +11,7 @@ from tqdm import tqdm
from PIL import Image from PIL import Image
import face_detection import face_detection
from models import Wav2Lip from models import Wav2Lip, Wav2LipV2
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -144,7 +144,7 @@ def get_device():
def _load(checkpoint_path): def _load(checkpoint_path):
device = get_device device = get_device()
if device == 'cuda': if device == 'cuda':
checkpoint = torch.load(checkpoint_path) checkpoint = torch.load(checkpoint_path)
else: else:
@ -154,7 +154,7 @@ def _load(checkpoint_path):
def load_model(path): def load_model(path):
model = Wav2Lip() model = Wav2LipV2()
print("Load checkpoint from: {}".format(path)) print("Load checkpoint from: {}".format(path))
logging.info(f'Load checkpoint from {path}') logging.info(f'Load checkpoint from {path}')
checkpoint = _load(path) checkpoint = _load(path)