add audio inferance handler and about codes

This commit is contained in:
jiegeaiai 2024-10-16 08:01:11 +08:00
parent dadfaf4eaf
commit da37374232
7 changed files with 334 additions and 23 deletions

View File

@ -0,0 +1,106 @@
#encoding = utf8
import queue
import time
from threading import Event, Thread
import numpy as np
import torch
from human import AudioHandler
from utils import load_model, mirror_index, get_device
class AudioInferenceHandler(AudioHandler):
def __init__(self, context, handler):
super().__init__(context, handler)
self._exit_event = Event()
self._run_thread = Thread(target=self.__on_run)
self._exit_event.set()
self._run_thread.start()
def on_handle(self, stream, index):
if self._handler is not None:
self._handler.on_handle(stream, index)
def __on_run(self):
model = load_model(r'.\checkpoints\wav2lip.pth')
print("Model loaded")
face_list_cycle = self._human.get_face_list_cycle()
length = len(face_list_cycle)
index = 0
count = 0
count_time = 0
print('start inference')
device = get_device()
print(f'use device:{device}')
while True:
if self._exit_event.is_set():
start_time = time.perf_counter()
batch_size = self._context.batch_size()
try:
mel_batch = self._feat_queue.get(block=True, timeout=0.1)
except queue.Empty:
continue
is_all_silence = True
audio_frames = []
for _ in range(batch_size * 2):
frame, type_ = self._audio_out_queue.get()
audio_frames.append((frame, type_))
if type_ == 0:
is_all_silence = False
if is_all_silence:
for i in range(batch_size):
self._human.push_res_frame(None, mirror_index(length, index), audio_frames[i * 2:i * 2 + 2])
index = index + 1
else:
print('infer=======')
t = time.perf_counter()
img_batch = []
for i in range(batch_size):
idx = mirror_index(length, index + i)
face = face_list_cycle[idx]
img_batch.append(face)
img_batch = np.asarray(img_batch)
mel_batch = np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, face.shape[0] // 2:] = 0
#
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch,
[len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
count_time += (time.perf_counter() - t)
count += batch_size
if count >= 100:
print(f"------actual avg infer fps:{count / count_time:.4f}")
count = 0
count_time = 0
image_index = 0
for i, res_frame in enumerate(pred):
self._human.push_res_frame(res_frame, mirror_index(length, index),
audio_frames[i * 2:i * 2 + 2])
index = index + 1
image_index = image_index + 1
print('batch count', image_index)
print('total batch time:', time.perf_counter() - start_time)
else:
time.sleep(1)
break
print('musereal inference processor stop')

View File

@ -8,6 +8,7 @@ from threading import Thread, Event
import numpy as np
from human import AudioHandler
from utils import melspectrogram
logger = logging.getLogger(__name__)
@ -45,20 +46,20 @@ class AudioMalHandler(AudioHandler):
# self.output_queue.put((frame, _type))
self._human.push_out_put(frame, _type)
# context not enough, do not run network.
if len(self.frames) <= self.stride_left_size + self.stride_right_size:
if len(self.frames) <= self._context.stride_left_size() + self._context.stride_right_size():
return
inputs = np.concatenate(self.frames) # [N * chunk]
mel = audio.melspectrogram(inputs)
mel = melspectrogram(inputs)
# print(mel.shape[0],mel.shape,len(mel[0]),len(self.frames))
# cut off stride
left = max(0, self.stride_left_size * 80 / 50)
right = min(len(mel[0]), len(mel[0]) - self.stride_right_size * 80 / 50)
mel_idx_multiplier = 80. * 2 / self.fps
left = max(0, self._context.stride_left_size() * 80 / 50)
right = min(len(mel[0]), len(mel[0]) - self._context.stride_right_size() * 80 / 50)
mel_idx_multiplier = 80. * 2 / self._context.fps()
mel_step_size = 16
i = 0
mel_chunks = []
while i < (len(self.frames) - self.stride_left_size - self.stride_right_size) / 2:
while i < (len(self.frames) - self._context.stride_left_size() - self._context.stride_right_size()) / 2:
start_idx = int(left + i * mel_idx_multiplier)
# print(start_idx)
if start_idx + mel_step_size > len(mel[0]):
@ -70,7 +71,7 @@ class AudioMalHandler(AudioHandler):
self._human.push_mel_chunks(mel_chunks)
# discard the old part to save memory
self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]
self.frames = self.frames[-(self._context.stride_left_size() + self._context.stride_right_size()):]
def get_audio_frame(self):
try:

View File

@ -1,8 +1,12 @@
#encoding = utf8
import logging
from asr import SherpaNcnnAsr
from nlp import PunctuationSplit, DouBao
from tts import TTSEdge, TTSAudioSplitHandle
logger = logging.getLogger(__name__)
class HumanContext:
def __init__(self):
@ -12,6 +16,14 @@ class HumanContext:
self._stride_left_size = 10
self._stride_right_size = 10
full_images, face_frames, coord_frames = load_avatar(r'./face/')
self._frame_list_cycle = full_images
self._face_list_cycle = face_frames
self._coord_list_cycle = coord_frames
face_images_length = len(self._face_list_cycle)
logging.info(f'face images length: {face_images_length}')
print(f'face images length: {face_images_length}')
@property
def fps(self):
return self._fps
@ -33,7 +45,7 @@ class HumanContext:
return self._stride_right_size
def build(self):
tts_handle = TTSAudioSplitHandle(self)
tts_handle = TTSAudioSplitHandle(self, None)
tts = TTSEdge(tts_handle)
split = PunctuationSplit()
nlp = DouBao(split, tts)

View File

@ -2,12 +2,13 @@
import os
import shutil
from audio import save_wav
from utils import save_wav
from human import AudioHandler
class TTSAudioHandle(AudioHandler):
def __init__(self):
def __init__(self, context, handler):
super().__init__(context, handler)
self._sample_rate = 16000
self._index = 1
@ -23,11 +24,13 @@ class TTSAudioHandle(AudioHandler):
self._index = self._index + 1
return self._index
def on_handle(self, stream, index):
pass
class TTSAudioSplitHandle(TTSAudioHandle):
def __init__(self, context):
super().__init__()
self._context = context
def __init__(self, context, handler):
super().__init__(context, handler)
self.sample_rate = self._context.get_audio_sample_rate()
self._chunk = self.sample_rate // self._context.get_fps()

View File

@ -1,4 +1,6 @@
#encoding = utf8
from .async_task_queue import AsyncTaskQueue
from .utils import mirror_index
from .utils import mirror_index, load_model, get_device, load_avatar
from .audio_utils import melspectrogram, save_wav

View File

@ -1,34 +1,41 @@
#encoding = utf8
import librosa
import librosa.filters
import numpy as np
# import tensorflow as tf
from scipy import signal
from scipy.io import wavfile
from hparams import hparams as hp
import soundfile as sf
from IPython.display import Audio
def load_wav(path, sr):
return librosa.core.load(path, sr=sr)[0]
def save_wav(wav, path, sr):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
#proposed by @dsmiller
# proposed by @dsmiller
wavfile.write(path, sr, wav.astype(np.int16))
def save_wavenet_wav(wav, path, sr):
librosa.output.write_wav(path, wav, sr=sr)
def preemphasis(wav, k, preemphasize=True):
if preemphasize:
return signal.lfilter([1, -k], [1], wav)
return wav
def inv_preemphasis(wav, k, inv_preemphasize=True):
if inv_preemphasize:
return signal.lfilter([1], [1, -k], wav)
return wav
def get_hop_size():
hop_size = hp.hop_size
if hop_size is None:
@ -36,34 +43,39 @@ def get_hop_size():
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
return hop_size
def linearspectrogram(wav):
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
if hp.signal_normalization:
return _normalize(S)
return S
def melspectrogram(wav):
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
if hp.signal_normalization:
return _normalize(S)
return S
def _lws_processor():
import lws
return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")
def _stft(y):
if hp.use_lws:
return _lws_processor(hp).stft(y).T
else:
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
##########################################################
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
"""Compute number of time frames of spectrogram
"""
@ -83,32 +95,40 @@ def pad_lr(x, fsize, fshift):
T = len(x) + 2 * pad
r = (M - 1) * fshift + fsize - T
return pad, pad + r
##########################################################
#Librosa correct padding
# Librosa correct padding
def librosa_pad_lr(x, fsize, fshift):
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
# Conversions
_mel_basis = None
def _linear_to_mel(spectogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectogram)
def _build_mel_basis():
assert hp.fmax <= hp.sample_rate // 2
return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels,
fmin=hp.fmin, fmax=hp.fmax)
def _amp_to_db(x):
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(min_level, x))
def _db_to_amp(x):
return np.power(10.0, (x) * 0.05)
def _normalize(S):
if hp.allow_clipping_in_normalization:
if hp.symmetric_mels:
@ -116,13 +136,14 @@ def _normalize(S):
-hp.max_abs_value, hp.max_abs_value)
else:
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
if hp.symmetric_mels:
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
else:
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
def _denormalize(D):
if hp.allow_clipping_in_normalization:
if hp.symmetric_mels:
@ -131,7 +152,7 @@ def _denormalize(D):
+ hp.min_level_db)
else:
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
if hp.symmetric_mels:
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
else:

View File

@ -1,4 +1,17 @@
#encoding = utf8
import logging
import os
import cv2
import numpy as np
import torch
from tqdm import tqdm
import face_detection
from models import Wav2Lip
logger = logging.getLogger(__name__)
def mirror_index(size, index):
# size = len(self.coord_list_cycle)
@ -7,4 +20,157 @@ def mirror_index(size, index):
if turn % 2 == 0:
return res
else:
return size - res - 1
return size - res - 1
def read_images(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
print(f'read image path:{img_path}')
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def read_files_path(path):
file_paths = []
files = os.listdir(path)
for file in files:
if not os.path.isdir(file):
file_paths.append(path + file)
return file_paths
def get_smoothened_boxes(boxes, t):
for i in range(len(boxes)):
if i + t > len(boxes):
window = boxes[len(boxes) - t:]
else:
window = boxes[i: i + t]
boxes[i] = np.mean(window, axis=0)
return boxes
def datagen_signal(frame, mel, face_det_results, img_size, wav2lip_batch_size=128):
img_batch, mel_batch, frame_batch, coord_batch = [], [], [], []
idx = 0
frame_to_save = frame.copy()
face, coord = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
for i, m in enumerate(mel):
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coord_batch.append(coord)
if len(img_batch) >= wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size // 2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
return img_batch, mel_batch, frame_batch, coord_batch
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
return img_batch, mel_batch, frame_batch, coord_batch
def face_detect(images, device):
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
batch_size = 16
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError(
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pad_y1, pad_y2, pad_x1, pad_x2 = [0, 10, 0, 0]
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pad_y1)
y2 = min(image.shape[0], rect[3] + pad_y2)
x1 = max(0, rect[0] - pad_x1)
x2 = min(image.shape[1], rect[2] + pad_x2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not False:
boxes = get_smoothened_boxes(boxes, t=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
def get_device():
return 'cuda' if torch.cuda.is_available() else 'cpu'
def _load(checkpoint_path):
device = get_device
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
logging.info(f'Load checkpoint from {path}')
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
device = get_device()
model = model.to(device)
return model.eval()
def load_avatar(path, img_size, device):
face_images_path = path
face_images_path = read_files_path(face_images_path)
full_list_cycle = read_images(face_images_path)
face_det_results = face_detect(full_list_cycle, device)
face_frames = []
coord_frames = []
for face, coord in face_det_results:
resized_crop_frame = cv2.resize(face, (img_size, img_size))
face_frames.append(resized_crop_frame)
coord_frames.append(coord)
return full_list_cycle, face_frames, coord_frames