render image to ui
This commit is contained in:
parent
bef51d5c47
commit
e606fb6ef5
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,5 +1,4 @@
|
|||||||
*.pkl
|
*.pkl
|
||||||
*.jpg
|
|
||||||
*.mp4
|
*.mp4
|
||||||
*.pth
|
*.pth
|
||||||
*.pyc
|
*.pyc
|
||||||
|
29
Human.py
29
Human.py
@ -1,4 +1,5 @@
|
|||||||
#encoding = utf8
|
#encoding = utf8
|
||||||
|
import io
|
||||||
import logging
|
import logging
|
||||||
|
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
@ -14,6 +15,7 @@ import pyaudio
|
|||||||
import audio
|
import audio
|
||||||
import face_detection
|
import face_detection
|
||||||
import utils
|
import utils
|
||||||
|
from infer import Infer
|
||||||
from models import Wav2Lip
|
from models import Wav2Lip
|
||||||
from tts.Chunk2Mal import Chunk2Mal
|
from tts.Chunk2Mal import Chunk2Mal
|
||||||
import torch
|
import torch
|
||||||
@ -160,7 +162,6 @@ def get_smoothened_boxes(boxes, T):
|
|||||||
def face_detect(images):
|
def face_detect(images):
|
||||||
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
||||||
flip_input=False, device=device)
|
flip_input=False, device=device)
|
||||||
|
|
||||||
batch_size = 16
|
batch_size = 16
|
||||||
|
|
||||||
while 1:
|
while 1:
|
||||||
@ -281,6 +282,16 @@ def datagen_signal(frame, mel, face_det_results):
|
|||||||
return img_batch, mel_batch, frame_batch, coords_batch
|
return img_batch, mel_batch, frame_batch, coords_batch
|
||||||
|
|
||||||
|
|
||||||
|
# 从字节流加载音频数据
|
||||||
|
def load_audio_from_bytes(byte_data):
|
||||||
|
# 使用 BytesIO 创建一个字节流
|
||||||
|
with io.BytesIO(byte_data) as b:
|
||||||
|
wav = audio.load_wav(b, 16000) # 根据实际库的参数进行调整
|
||||||
|
return wav
|
||||||
|
|
||||||
|
# 假设你有音频文件的字节数据
|
||||||
|
|
||||||
|
|
||||||
class Human:
|
class Human:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self._fps = 25 # 20 ms per frame
|
self._fps = 25 # 20 ms per frame
|
||||||
@ -294,12 +305,15 @@ class Human:
|
|||||||
|
|
||||||
self._chunk_2_mal = Chunk2Mal(self)
|
self._chunk_2_mal = Chunk2Mal(self)
|
||||||
self._tts = TTSBase(self)
|
self._tts = TTSBase(self)
|
||||||
|
self._infer = Infer(self)
|
||||||
|
|
||||||
self.mel_chunks_queue_ = Queue()
|
self.mel_chunks_queue_ = Queue()
|
||||||
self.audio_chunks_queue_ = Queue()
|
self.audio_chunks_queue_ = Queue()
|
||||||
self._test_image_queue = Queue()
|
self._test_image_queue = Queue()
|
||||||
|
|
||||||
self._thread = None
|
self._thread = None
|
||||||
|
thread = threading.Thread(target=self.test)
|
||||||
|
thread.start()
|
||||||
# self.test()
|
# self.test()
|
||||||
# self.play_pcm()
|
# self.play_pcm()
|
||||||
|
|
||||||
@ -326,7 +340,13 @@ class Human:
|
|||||||
# p.terminate()
|
# p.terminate()
|
||||||
|
|
||||||
def test(self):
|
def test(self):
|
||||||
wav = audio.load_wav(r'./audio/audio1.wav', 16000)
|
wav = audio.load_wav(r'./audio/test.wav', 16000)
|
||||||
|
# with open(r'./audio/test.wav', 'rb') as f:
|
||||||
|
# byte_data = f.read()
|
||||||
|
#
|
||||||
|
# byte_data = byte_data[16:]
|
||||||
|
# inputs = np.concatenate(byte_data) # [N * chunk]
|
||||||
|
# wav = load_audio_from_bytes(inputs)
|
||||||
mel = audio.melspectrogram(wav)
|
mel = audio.melspectrogram(wav)
|
||||||
if np.isnan(mel.reshape(-1)).sum() > 0:
|
if np.isnan(mel.reshape(-1)).sum() > 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -432,7 +452,7 @@ class Human:
|
|||||||
self._chunk_2_mal.push_chunk(audio_chunk)
|
self._chunk_2_mal.push_chunk(audio_chunk)
|
||||||
|
|
||||||
def push_mel_chunks_queue(self, mel_chunk):
|
def push_mel_chunks_queue(self, mel_chunk):
|
||||||
self.mel_chunks_queue_.put(mel_chunk)
|
self._infer.push(mel_chunk)
|
||||||
# self.audio_chunks_queue_.put(audio_chunk)
|
# self.audio_chunks_queue_.put(audio_chunk)
|
||||||
|
|
||||||
def push_feat_queue(self, mel_chunks):
|
def push_feat_queue(self, mel_chunks):
|
||||||
@ -443,6 +463,9 @@ class Human:
|
|||||||
print("push_audio_frames")
|
print("push_audio_frames")
|
||||||
self._output_queue.put((chunk, type_))
|
self._output_queue.put((chunk, type_))
|
||||||
|
|
||||||
|
def push_render_image(self, image):
|
||||||
|
self._test_image_queue.put(image)
|
||||||
|
|
||||||
def render(self):
|
def render(self):
|
||||||
try:
|
try:
|
||||||
# img, aud = self._res_frame_queue.get(block=True, timeout=.3)
|
# img, aud = self._res_frame_queue.get(block=True, timeout=.3)
|
||||||
|
@ -22,7 +22,7 @@ async def play_tts(text, voice):
|
|||||||
|
|
||||||
# 设置 PyAudio
|
# 设置 PyAudio
|
||||||
audio = pyaudio.PyAudio()
|
audio = pyaudio.PyAudio()
|
||||||
stream = audio.open(format=pyaudio.paInt16, channels=1, rate=24000, output=True)
|
stream = audio.open(format=pyaudio.paInt16, channels=1, rate=16000, output=True)
|
||||||
|
|
||||||
# async for chunk in communicate.stream(): # 使用 stream 方法
|
# async for chunk in communicate.stream(): # 使用 stream 方法
|
||||||
# if chunk['type'] == 'audio': # 确保 chunk 是字节流
|
# if chunk['type'] == 'audio': # 确保 chunk 是字节流
|
||||||
|
200
infer.py
Normal file
200
infer.py
Normal file
@ -0,0 +1,200 @@
|
|||||||
|
#encoding = utf8
|
||||||
|
import queue
|
||||||
|
from queue import Queue
|
||||||
|
from threading import Thread, Event
|
||||||
|
import logging
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
import face_detection
|
||||||
|
import utils
|
||||||
|
from models import Wav2Lip
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||||
|
|
||||||
|
|
||||||
|
def read_images(img_list):
|
||||||
|
frames = []
|
||||||
|
print('reading images...')
|
||||||
|
for img_path in tqdm(img_list):
|
||||||
|
print(f'read image path:{img_path}')
|
||||||
|
frame = cv2.imread(img_path)
|
||||||
|
frames.append(frame)
|
||||||
|
return frames
|
||||||
|
|
||||||
|
|
||||||
|
def _load(checkpoint_path):
|
||||||
|
if device == 'cuda':
|
||||||
|
checkpoint = torch.load(checkpoint_path)
|
||||||
|
else:
|
||||||
|
checkpoint = torch.load(checkpoint_path,
|
||||||
|
map_location=lambda storage, loc: storage)
|
||||||
|
return checkpoint
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(path):
|
||||||
|
model = Wav2Lip()
|
||||||
|
print("Load checkpoint from: {}".format(path))
|
||||||
|
logging.info(f'Load checkpoint from {path}')
|
||||||
|
checkpoint = _load(path)
|
||||||
|
s = checkpoint["state_dict"]
|
||||||
|
new_s = {}
|
||||||
|
for k, v in s.items():
|
||||||
|
new_s[k.replace('module.', '')] = v
|
||||||
|
model.load_state_dict(new_s)
|
||||||
|
model = model.to(device)
|
||||||
|
return model.eval()
|
||||||
|
|
||||||
|
|
||||||
|
def get_smoothened_boxes(boxes, T):
|
||||||
|
for i in range(len(boxes)):
|
||||||
|
if i + T > len(boxes):
|
||||||
|
window = boxes[len(boxes) - T:]
|
||||||
|
else:
|
||||||
|
window = boxes[i : i + T]
|
||||||
|
boxes[i] = np.mean(window, axis=0)
|
||||||
|
return boxes
|
||||||
|
|
||||||
|
|
||||||
|
def face_detect(images):
|
||||||
|
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
||||||
|
flip_input=False, device=device)
|
||||||
|
batch_size = 16
|
||||||
|
|
||||||
|
while 1:
|
||||||
|
predictions = []
|
||||||
|
try:
|
||||||
|
for i in range(0, len(images), batch_size):
|
||||||
|
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
||||||
|
except RuntimeError:
|
||||||
|
if batch_size == 1:
|
||||||
|
raise RuntimeError(
|
||||||
|
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
|
||||||
|
batch_size //= 2
|
||||||
|
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
|
||||||
|
continue
|
||||||
|
break
|
||||||
|
|
||||||
|
results = []
|
||||||
|
pady1, pady2, padx1, padx2 = [0, 10, 0, 0]
|
||||||
|
for rect, image in zip(predictions, images):
|
||||||
|
if rect is None:
|
||||||
|
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
|
||||||
|
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
|
||||||
|
|
||||||
|
y1 = max(0, rect[1] - pady1)
|
||||||
|
y2 = min(image.shape[0], rect[3] + pady2)
|
||||||
|
x1 = max(0, rect[0] - padx1)
|
||||||
|
x2 = min(image.shape[1], rect[2] + padx2)
|
||||||
|
|
||||||
|
results.append([x1, y1, x2, y2])
|
||||||
|
|
||||||
|
boxes = np.array(results)
|
||||||
|
boxes = get_smoothened_boxes(boxes, T=5)
|
||||||
|
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
||||||
|
|
||||||
|
del detector
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
img_size = 96
|
||||||
|
wav2lip_batch_size = 128
|
||||||
|
|
||||||
|
|
||||||
|
def datagen_signal(frame, mel, face_det_results):
|
||||||
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
||||||
|
|
||||||
|
# for i, m in enumerate(mels):
|
||||||
|
idx = 0
|
||||||
|
frame_to_save = frame.copy()
|
||||||
|
face, coords = face_det_results[idx].copy()
|
||||||
|
|
||||||
|
face = cv2.resize(face, (img_size, img_size))
|
||||||
|
m = mel
|
||||||
|
|
||||||
|
img_batch.append(face)
|
||||||
|
mel_batch.append(m)
|
||||||
|
frame_batch.append(frame_to_save)
|
||||||
|
coords_batch.append(coords)
|
||||||
|
|
||||||
|
if len(img_batch) >= wav2lip_batch_size:
|
||||||
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
||||||
|
|
||||||
|
img_masked = img_batch.copy()
|
||||||
|
img_masked[:, img_size // 2:] = 0
|
||||||
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
||||||
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
||||||
|
|
||||||
|
return img_batch, mel_batch, frame_batch, coords_batch
|
||||||
|
|
||||||
|
if len(img_batch) > 0:
|
||||||
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
||||||
|
img_masked = img_batch.copy()
|
||||||
|
img_masked[:, img_size//2:] = 0
|
||||||
|
|
||||||
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
||||||
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
||||||
|
|
||||||
|
return img_batch, mel_batch, frame_batch, coords_batch
|
||||||
|
|
||||||
|
|
||||||
|
class Infer:
|
||||||
|
def __init__(self, human):
|
||||||
|
self._human = human
|
||||||
|
self._queue = Queue()
|
||||||
|
|
||||||
|
self._exit_event = Event()
|
||||||
|
self._run_thread = Thread(target=self.__on_run)
|
||||||
|
self._exit_event.set()
|
||||||
|
self._run_thread.start()
|
||||||
|
|
||||||
|
def __on_run(self):
|
||||||
|
face_images_path = r'./face/'
|
||||||
|
face_images_path = utils.read_files_path(face_images_path)
|
||||||
|
face_list_cycle = read_images(face_images_path)
|
||||||
|
face_images_length = len(face_list_cycle)
|
||||||
|
logging.info(f'face images length: {face_images_length}')
|
||||||
|
print(f'face images length: {face_images_length}')
|
||||||
|
|
||||||
|
model = load_model(r'.\checkpoints\wav2lip.pth')
|
||||||
|
print("Model loaded")
|
||||||
|
|
||||||
|
# frame_h, frame_w = face_list_cycle[0].shape[:-1]
|
||||||
|
face_det_results = face_detect(face_list_cycle)
|
||||||
|
|
||||||
|
j = 0
|
||||||
|
|
||||||
|
while self._exit_event.is_set():
|
||||||
|
try:
|
||||||
|
m = self._queue.get(block=True, timeout=1)
|
||||||
|
except queue.Empty:
|
||||||
|
continue
|
||||||
|
|
||||||
|
img_batch, mel_batch, frames, coords = datagen_signal(face_list_cycle[0], m, face_det_results)
|
||||||
|
|
||||||
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
||||||
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
pred = model(mel_batch, img_batch)
|
||||||
|
|
||||||
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
||||||
|
for p, f, c in zip(pred, frames, coords):
|
||||||
|
y1, y2, x1, x2 = c
|
||||||
|
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
|
||||||
|
|
||||||
|
f[y1:y2, x1:x2] = p
|
||||||
|
# name = "%04d" % j
|
||||||
|
# cv2.imwrite(f'temp/images/{j}.jpg', p)
|
||||||
|
# j = j + 1
|
||||||
|
p = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
|
||||||
|
self._human.push_render_image(p)
|
||||||
|
# out.write(f)
|
||||||
|
|
||||||
|
def push(self, chunk):
|
||||||
|
self._queue.put(chunk)
|
@ -2,6 +2,7 @@
|
|||||||
|
|
||||||
import logging
|
import logging
|
||||||
import queue
|
import queue
|
||||||
|
import time
|
||||||
from queue import Queue
|
from queue import Queue
|
||||||
from threading import Thread, Event
|
from threading import Thread, Event
|
||||||
|
|
||||||
@ -28,25 +29,28 @@ class Chunk2Mal:
|
|||||||
def _on_run(self):
|
def _on_run(self):
|
||||||
logging.info('chunk2mal run')
|
logging.info('chunk2mal run')
|
||||||
while self._exit_event.is_set():
|
while self._exit_event.is_set():
|
||||||
|
if self._audio_chunk_queue.empty():
|
||||||
|
time.sleep(0.5)
|
||||||
|
continue
|
||||||
try:
|
try:
|
||||||
chunk, type_ = self.pull_chunk()
|
chunk = self._audio_chunk_queue.get(block=True, timeout=1)
|
||||||
self._chunks.append(chunk)
|
self._chunks.append(chunk)
|
||||||
self._human.push_audio_frames(chunk, type_)
|
self._human.push_audio_frames(chunk, 0)
|
||||||
|
if len(self._chunks) < 10:
|
||||||
|
continue
|
||||||
except queue.Empty:
|
except queue.Empty:
|
||||||
# print('Chunk2Mal queue.Empty')
|
# print('Chunk2Mal queue.Empty')
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if type_ == 0:
|
|
||||||
continue
|
|
||||||
|
|
||||||
logging.info('np.concatenate')
|
logging.info('np.concatenate')
|
||||||
mel = audio.melspectrogram(chunk)
|
inputs = np.concatenate(self._chunks) # [N * chunk]
|
||||||
|
mel = audio.melspectrogram(inputs)
|
||||||
if np.isnan(mel.reshape(-1)).sum() > 0:
|
if np.isnan(mel.reshape(-1)).sum() > 0:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
|
'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
|
||||||
|
|
||||||
mel_step_size = 16
|
mel_step_size = 16
|
||||||
|
|
||||||
print('fps:', self._human.get_fps())
|
print('fps:', self._human.get_fps())
|
||||||
mel_idx_multiplier = 80. / self._human.get_fps()
|
mel_idx_multiplier = 80. / self._human.get_fps()
|
||||||
print('mel_idx_multiplier:', mel_idx_multiplier)
|
print('mel_idx_multiplier:', mel_idx_multiplier)
|
||||||
@ -55,10 +59,8 @@ class Chunk2Mal:
|
|||||||
while 1:
|
while 1:
|
||||||
start_idx = int(i * mel_idx_multiplier)
|
start_idx = int(i * mel_idx_multiplier)
|
||||||
if start_idx + mel_step_size > len(mel[0]):
|
if start_idx + mel_step_size > len(mel[0]):
|
||||||
# mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
|
|
||||||
self._human.push_mel_chunks_queue(mel[:, len(mel[0]) - mel_step_size:])
|
self._human.push_mel_chunks_queue(mel[:, len(mel[0]) - mel_step_size:])
|
||||||
break
|
break
|
||||||
# mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size])
|
|
||||||
self._human.push_mel_chunks_queue(mel[:, start_idx: start_idx + mel_step_size])
|
self._human.push_mel_chunks_queue(mel[:, start_idx: start_idx + mel_step_size])
|
||||||
i += 1
|
i += 1
|
||||||
|
|
||||||
|
@ -7,6 +7,7 @@ import edge_tts
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import pyaudio
|
import pyaudio
|
||||||
import soundfile
|
import soundfile
|
||||||
|
import sounddevice
|
||||||
import resampy
|
import resampy
|
||||||
import queue
|
import queue
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
@ -23,18 +24,16 @@ class TTSBase:
|
|||||||
self._human = human
|
self._human = human
|
||||||
self._thread = None
|
self._thread = None
|
||||||
self._queue = Queue()
|
self._queue = Queue()
|
||||||
self._exit_event = None
|
|
||||||
self._io_stream = BytesIO()
|
self._io_stream = BytesIO()
|
||||||
self._sample_rate = 16000
|
self._chunk_len = self._human.get_audio_sample_rate() // self._human.get_fps()
|
||||||
self._chunk_len = self._sample_rate // self._human.get_fps()
|
|
||||||
|
|
||||||
self._exit_event = Event()
|
self._exit_event = Event()
|
||||||
self._thread = Thread(target=self._on_run)
|
self._thread = Thread(target=self._on_run)
|
||||||
self._exit_event.set()
|
self._exit_event.set()
|
||||||
self._thread.start()
|
self._thread.start()
|
||||||
self._pcm_player = pyaudio.PyAudio()
|
# self._pcm_player = pyaudio.PyAudio()
|
||||||
self._pcm_stream = self._pcm_player.open(format=pyaudio.paInt16,
|
# self._pcm_stream = self._pcm_player.open(format=pyaudio.paInt16,
|
||||||
channels=1, rate=16000, output=True)
|
# channels=1, rate=24000, output=True)
|
||||||
logging.info('tts start')
|
logging.info('tts start')
|
||||||
|
|
||||||
def _on_run(self):
|
def _on_run(self):
|
||||||
@ -56,16 +55,24 @@ class TTSBase:
|
|||||||
self._io_stream.seek(0)
|
self._io_stream.seek(0)
|
||||||
stream = self.__create_bytes_stream(self._io_stream)
|
stream = self.__create_bytes_stream(self._io_stream)
|
||||||
stream_len = stream.shape[0]
|
stream_len = stream.shape[0]
|
||||||
|
# try:
|
||||||
|
# sounddevice.play(stream, samplerate=self._human.get_audio_sample_rate())
|
||||||
|
# sounddevice.wait() # 等待音频播放完毕
|
||||||
|
# except Exception as e:
|
||||||
|
# logger.error(f"播放音频出错: {e}") playrec
|
||||||
index = 0
|
index = 0
|
||||||
while stream_len >= self._chunk_len:
|
while stream_len >= self._chunk_len:
|
||||||
audio_chunk = stream[index:index + self._chunk_len]
|
audio_chunk = stream[index:index + self._chunk_len]
|
||||||
|
# sounddevice.play(audio_chunk, samplerate=self._human.get_audio_sample_rate())
|
||||||
# self._pcm_stream.write(audio_chunk)
|
# self._pcm_stream.write(audio_chunk)
|
||||||
# self._pcm_stream.write(AudioSegment.from_mp3(audio_chunk))
|
# self._pcm_stream.write(audio_chunk.tobytes())
|
||||||
# self._human.push_audio_chunk(audio_chunk)
|
# self._human.push_audio_chunk(audio_chunk)
|
||||||
# self._human.push_mel_chunks_queue(audio_chunk)
|
# self._human.push_mel_chunks_queue(audio_chunk)
|
||||||
self._human.push_audio_chunk(audio_chunk)
|
self._human.push_audio_chunk(audio_chunk)
|
||||||
stream_len -= self._chunk_len
|
stream_len -= self._chunk_len
|
||||||
index += self._chunk_len
|
index += self._chunk_len
|
||||||
|
self._io_stream.seek(0)
|
||||||
|
self._io_stream.truncate()
|
||||||
|
|
||||||
def __create_bytes_stream(self, io_stream):
|
def __create_bytes_stream(self, io_stream):
|
||||||
stream, sample_rate = soundfile.read(io_stream)
|
stream, sample_rate = soundfile.read(io_stream)
|
||||||
@ -76,29 +83,34 @@ class TTSBase:
|
|||||||
logger.warning(f'tts audio has {stream.shape[1]} channels, only use the first')
|
logger.warning(f'tts audio has {stream.shape[1]} channels, only use the first')
|
||||||
stream = stream[:, 1]
|
stream = stream[:, 1]
|
||||||
|
|
||||||
if sample_rate != self._sample_rate and stream.shape[0] > 0:
|
if sample_rate != self._human.get_audio_sample_rate() and stream.shape[0] > 0:
|
||||||
logger.warning(f'tts audio sample rate is {sample_rate}, resample to {self._sample_rate}')
|
logger.warning(f'tts audio sample rate is {sample_rate}, resample to {self._human.get_audio_sample_rate() }')
|
||||||
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self._sample_rate)
|
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self._human.get_audio_sample_rate() )
|
||||||
|
|
||||||
return stream
|
return stream
|
||||||
|
|
||||||
async def __on_request(self, voice, txt):
|
async def __on_request(self, voice, txt):
|
||||||
communicate = edge_tts.Communicate(txt, voice)
|
communicate = edge_tts.Communicate(txt, voice)
|
||||||
first = True
|
first = True
|
||||||
# total_data = b''
|
total_data = b''
|
||||||
# CHUNK_SIZE = self._chunk_len
|
CHUNK_SIZE = self._chunk_len
|
||||||
async for chunk in communicate.stream():
|
async for chunk in communicate.stream():
|
||||||
if chunk["type"] == "audio" and chunk["data"]:
|
if chunk["type"] == "audio" and chunk["data"]:
|
||||||
self._io_stream.write(chunk['data'])
|
data = chunk['data']
|
||||||
# total_data += chunk["data"]
|
self._io_stream.write(data)
|
||||||
# if len(total_data) >= CHUNK_SIZE:
|
elif chunk["type"] == "WordBoundary":
|
||||||
|
pass
|
||||||
|
'''
|
||||||
|
total_data += chunk["data"]
|
||||||
|
if len(total_data) >= CHUNK_SIZE:
|
||||||
# print(f"Time elapsed: {time.time() - start_time:.2f} seconds") # Print time
|
# print(f"Time elapsed: {time.time() - start_time:.2f} seconds") # Print time
|
||||||
# audio_data = AudioSegment.from_mp3(BytesIO(total_data[:CHUNK_SIZE])) #.raw_data
|
audio_data = AudioSegment.from_mp3(BytesIO(total_data[:CHUNK_SIZE])) #.raw_data
|
||||||
# audio_data = audio_data.set_frame_rate(self._human.get_audio_sample_rate())
|
audio_data = audio_data.set_frame_rate(self._human.get_audio_sample_rate())
|
||||||
# self._human.push_audio_chunk(audio_data)
|
# self._human.push_audio_chunk(audio_data)
|
||||||
# self._pcm_stream.write(audio_data.raw_data)
|
self._pcm_stream.write(audio_data.raw_data)
|
||||||
# play_audio(total_data[:CHUNK_SIZE], stream) # Play first CHUNK_SIZE bytes
|
# play_audio(total_data[:CHUNK_SIZE], stream) # Play first CHUNK_SIZE bytes
|
||||||
# total_data = total_data[CHUNK_SIZE:] # Remove played data
|
total_data = total_data[CHUNK_SIZE:] # Remove played data
|
||||||
|
'''
|
||||||
|
|
||||||
# if first:
|
# if first:
|
||||||
# first = False
|
# first = False
|
||||||
@ -106,10 +118,12 @@ class TTSBase:
|
|||||||
# if chuck['type'] == 'audio':
|
# if chuck['type'] == 'audio':
|
||||||
# # self._io_stream.write(chuck['data'])
|
# # self._io_stream.write(chuck['data'])
|
||||||
# self._io_stream.write(AudioSegment.from_mp3(BytesIO(total_data[:CHUNK_SIZE])).raw_data)
|
# self._io_stream.write(AudioSegment.from_mp3(BytesIO(total_data[:CHUNK_SIZE])).raw_data)
|
||||||
|
|
||||||
# if len(total_data) > 0:
|
# if len(total_data) > 0:
|
||||||
# self._pcm_stream.write(AudioSegment.from_mp3(BytesIO(total_data)).raw_data)
|
# self._pcm_stream.write(AudioSegment.from_mp3(BytesIO(total_data)).raw_data)
|
||||||
# audio_data = AudioSegment.from_mp3(BytesIO(total_data)) # .raw_data
|
# audio_data = AudioSegment.from_mp3(BytesIO(total_data)) # .raw_data
|
||||||
# audio_data = audio_data.set_frame_rate(self._human.get_audio_sample_rate())
|
# audio_data = audio_data.set_frame_rate(self._human.get_audio_sample_rate())
|
||||||
|
# self._pcm_stream.write(audio_data.raw_data)
|
||||||
# self._human.push_audio_chunk(audio_data)
|
# self._human.push_audio_chunk(audio_data)
|
||||||
# self._io_stream.write(AudioSegment.from_mp3(BytesIO(total_data)).raw_data)
|
# self._io_stream.write(AudioSegment.from_mp3(BytesIO(total_data)).raw_data)
|
||||||
|
|
||||||
|
5
ui.py
5
ui.py
@ -63,10 +63,11 @@ class App(customtkinter.CTk):
|
|||||||
self._human.on_destroy()
|
self._human.on_destroy()
|
||||||
|
|
||||||
def play_audio(self):
|
def play_audio(self):
|
||||||
|
# return
|
||||||
if self._is_play_audio:
|
if self._is_play_audio:
|
||||||
return
|
return
|
||||||
self._is_play_audio = True
|
self._is_play_audio = True
|
||||||
file = os.path.curdir + '/audio/audio1.wav'
|
file = os.path.curdir + '/audio/test.wav'
|
||||||
print(file)
|
print(file)
|
||||||
winsound.PlaySound(file, winsound.SND_ASYNC or winsound.SND_FILENAME)
|
winsound.PlaySound(file, winsound.SND_ASYNC or winsound.SND_FILENAME)
|
||||||
# playsound(file)
|
# playsound(file)
|
||||||
@ -104,7 +105,7 @@ class App(customtkinter.CTk):
|
|||||||
height = self.winfo_height() * 0.5
|
height = self.winfo_height() * 0.5
|
||||||
self._canvas.create_image(width, height, anchor=customtkinter.CENTER, image=imgtk)
|
self._canvas.create_image(width, height, anchor=customtkinter.CENTER, image=imgtk)
|
||||||
self._canvas.update()
|
self._canvas.update()
|
||||||
self.after(34, self._render)
|
self.after(33, self._render)
|
||||||
|
|
||||||
def request_tts(self):
|
def request_tts(self):
|
||||||
content = self.entry.get()
|
content = self.entry.get()
|
||||||
|
Loading…
Reference in New Issue
Block a user