render image to ui
This commit is contained in:
parent
bef51d5c47
commit
e606fb6ef5
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,5 +1,4 @@
|
||||
*.pkl
|
||||
*.jpg
|
||||
*.mp4
|
||||
*.pth
|
||||
*.pyc
|
||||
|
29
Human.py
29
Human.py
@ -1,4 +1,5 @@
|
||||
#encoding = utf8
|
||||
import io
|
||||
import logging
|
||||
|
||||
import multiprocessing as mp
|
||||
@ -14,6 +15,7 @@ import pyaudio
|
||||
import audio
|
||||
import face_detection
|
||||
import utils
|
||||
from infer import Infer
|
||||
from models import Wav2Lip
|
||||
from tts.Chunk2Mal import Chunk2Mal
|
||||
import torch
|
||||
@ -160,7 +162,6 @@ def get_smoothened_boxes(boxes, T):
|
||||
def face_detect(images):
|
||||
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
||||
flip_input=False, device=device)
|
||||
|
||||
batch_size = 16
|
||||
|
||||
while 1:
|
||||
@ -281,6 +282,16 @@ def datagen_signal(frame, mel, face_det_results):
|
||||
return img_batch, mel_batch, frame_batch, coords_batch
|
||||
|
||||
|
||||
# 从字节流加载音频数据
|
||||
def load_audio_from_bytes(byte_data):
|
||||
# 使用 BytesIO 创建一个字节流
|
||||
with io.BytesIO(byte_data) as b:
|
||||
wav = audio.load_wav(b, 16000) # 根据实际库的参数进行调整
|
||||
return wav
|
||||
|
||||
# 假设你有音频文件的字节数据
|
||||
|
||||
|
||||
class Human:
|
||||
def __init__(self):
|
||||
self._fps = 25 # 20 ms per frame
|
||||
@ -294,12 +305,15 @@ class Human:
|
||||
|
||||
self._chunk_2_mal = Chunk2Mal(self)
|
||||
self._tts = TTSBase(self)
|
||||
self._infer = Infer(self)
|
||||
|
||||
self.mel_chunks_queue_ = Queue()
|
||||
self.audio_chunks_queue_ = Queue()
|
||||
self._test_image_queue = Queue()
|
||||
|
||||
self._thread = None
|
||||
thread = threading.Thread(target=self.test)
|
||||
thread.start()
|
||||
# self.test()
|
||||
# self.play_pcm()
|
||||
|
||||
@ -326,7 +340,13 @@ class Human:
|
||||
# p.terminate()
|
||||
|
||||
def test(self):
|
||||
wav = audio.load_wav(r'./audio/audio1.wav', 16000)
|
||||
wav = audio.load_wav(r'./audio/test.wav', 16000)
|
||||
# with open(r'./audio/test.wav', 'rb') as f:
|
||||
# byte_data = f.read()
|
||||
#
|
||||
# byte_data = byte_data[16:]
|
||||
# inputs = np.concatenate(byte_data) # [N * chunk]
|
||||
# wav = load_audio_from_bytes(inputs)
|
||||
mel = audio.melspectrogram(wav)
|
||||
if np.isnan(mel.reshape(-1)).sum() > 0:
|
||||
raise ValueError(
|
||||
@ -432,7 +452,7 @@ class Human:
|
||||
self._chunk_2_mal.push_chunk(audio_chunk)
|
||||
|
||||
def push_mel_chunks_queue(self, mel_chunk):
|
||||
self.mel_chunks_queue_.put(mel_chunk)
|
||||
self._infer.push(mel_chunk)
|
||||
# self.audio_chunks_queue_.put(audio_chunk)
|
||||
|
||||
def push_feat_queue(self, mel_chunks):
|
||||
@ -443,6 +463,9 @@ class Human:
|
||||
print("push_audio_frames")
|
||||
self._output_queue.put((chunk, type_))
|
||||
|
||||
def push_render_image(self, image):
|
||||
self._test_image_queue.put(image)
|
||||
|
||||
def render(self):
|
||||
try:
|
||||
# img, aud = self._res_frame_queue.get(block=True, timeout=.3)
|
||||
|
@ -22,7 +22,7 @@ async def play_tts(text, voice):
|
||||
|
||||
# 设置 PyAudio
|
||||
audio = pyaudio.PyAudio()
|
||||
stream = audio.open(format=pyaudio.paInt16, channels=1, rate=24000, output=True)
|
||||
stream = audio.open(format=pyaudio.paInt16, channels=1, rate=16000, output=True)
|
||||
|
||||
# async for chunk in communicate.stream(): # 使用 stream 方法
|
||||
# if chunk['type'] == 'audio': # 确保 chunk 是字节流
|
||||
|
200
infer.py
Normal file
200
infer.py
Normal file
@ -0,0 +1,200 @@
|
||||
#encoding = utf8
|
||||
import queue
|
||||
from queue import Queue
|
||||
from threading import Thread, Event
|
||||
import logging
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
import face_detection
|
||||
import utils
|
||||
from models import Wav2Lip
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
|
||||
|
||||
def read_images(img_list):
|
||||
frames = []
|
||||
print('reading images...')
|
||||
for img_path in tqdm(img_list):
|
||||
print(f'read image path:{img_path}')
|
||||
frame = cv2.imread(img_path)
|
||||
frames.append(frame)
|
||||
return frames
|
||||
|
||||
|
||||
def _load(checkpoint_path):
|
||||
if device == 'cuda':
|
||||
checkpoint = torch.load(checkpoint_path)
|
||||
else:
|
||||
checkpoint = torch.load(checkpoint_path,
|
||||
map_location=lambda storage, loc: storage)
|
||||
return checkpoint
|
||||
|
||||
|
||||
def load_model(path):
|
||||
model = Wav2Lip()
|
||||
print("Load checkpoint from: {}".format(path))
|
||||
logging.info(f'Load checkpoint from {path}')
|
||||
checkpoint = _load(path)
|
||||
s = checkpoint["state_dict"]
|
||||
new_s = {}
|
||||
for k, v in s.items():
|
||||
new_s[k.replace('module.', '')] = v
|
||||
model.load_state_dict(new_s)
|
||||
model = model.to(device)
|
||||
return model.eval()
|
||||
|
||||
|
||||
def get_smoothened_boxes(boxes, T):
|
||||
for i in range(len(boxes)):
|
||||
if i + T > len(boxes):
|
||||
window = boxes[len(boxes) - T:]
|
||||
else:
|
||||
window = boxes[i : i + T]
|
||||
boxes[i] = np.mean(window, axis=0)
|
||||
return boxes
|
||||
|
||||
|
||||
def face_detect(images):
|
||||
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
||||
flip_input=False, device=device)
|
||||
batch_size = 16
|
||||
|
||||
while 1:
|
||||
predictions = []
|
||||
try:
|
||||
for i in range(0, len(images), batch_size):
|
||||
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
||||
except RuntimeError:
|
||||
if batch_size == 1:
|
||||
raise RuntimeError(
|
||||
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
|
||||
batch_size //= 2
|
||||
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
|
||||
continue
|
||||
break
|
||||
|
||||
results = []
|
||||
pady1, pady2, padx1, padx2 = [0, 10, 0, 0]
|
||||
for rect, image in zip(predictions, images):
|
||||
if rect is None:
|
||||
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
|
||||
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
|
||||
|
||||
y1 = max(0, rect[1] - pady1)
|
||||
y2 = min(image.shape[0], rect[3] + pady2)
|
||||
x1 = max(0, rect[0] - padx1)
|
||||
x2 = min(image.shape[1], rect[2] + padx2)
|
||||
|
||||
results.append([x1, y1, x2, y2])
|
||||
|
||||
boxes = np.array(results)
|
||||
boxes = get_smoothened_boxes(boxes, T=5)
|
||||
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
||||
|
||||
del detector
|
||||
return results
|
||||
|
||||
|
||||
img_size = 96
|
||||
wav2lip_batch_size = 128
|
||||
|
||||
|
||||
def datagen_signal(frame, mel, face_det_results):
|
||||
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
||||
|
||||
# for i, m in enumerate(mels):
|
||||
idx = 0
|
||||
frame_to_save = frame.copy()
|
||||
face, coords = face_det_results[idx].copy()
|
||||
|
||||
face = cv2.resize(face, (img_size, img_size))
|
||||
m = mel
|
||||
|
||||
img_batch.append(face)
|
||||
mel_batch.append(m)
|
||||
frame_batch.append(frame_to_save)
|
||||
coords_batch.append(coords)
|
||||
|
||||
if len(img_batch) >= wav2lip_batch_size:
|
||||
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
||||
|
||||
img_masked = img_batch.copy()
|
||||
img_masked[:, img_size // 2:] = 0
|
||||
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
||||
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
||||
|
||||
return img_batch, mel_batch, frame_batch, coords_batch
|
||||
|
||||
if len(img_batch) > 0:
|
||||
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
||||
img_masked = img_batch.copy()
|
||||
img_masked[:, img_size//2:] = 0
|
||||
|
||||
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
||||
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
||||
|
||||
return img_batch, mel_batch, frame_batch, coords_batch
|
||||
|
||||
|
||||
class Infer:
|
||||
def __init__(self, human):
|
||||
self._human = human
|
||||
self._queue = Queue()
|
||||
|
||||
self._exit_event = Event()
|
||||
self._run_thread = Thread(target=self.__on_run)
|
||||
self._exit_event.set()
|
||||
self._run_thread.start()
|
||||
|
||||
def __on_run(self):
|
||||
face_images_path = r'./face/'
|
||||
face_images_path = utils.read_files_path(face_images_path)
|
||||
face_list_cycle = read_images(face_images_path)
|
||||
face_images_length = len(face_list_cycle)
|
||||
logging.info(f'face images length: {face_images_length}')
|
||||
print(f'face images length: {face_images_length}')
|
||||
|
||||
model = load_model(r'.\checkpoints\wav2lip.pth')
|
||||
print("Model loaded")
|
||||
|
||||
# frame_h, frame_w = face_list_cycle[0].shape[:-1]
|
||||
face_det_results = face_detect(face_list_cycle)
|
||||
|
||||
j = 0
|
||||
|
||||
while self._exit_event.is_set():
|
||||
try:
|
||||
m = self._queue.get(block=True, timeout=1)
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
img_batch, mel_batch, frames, coords = datagen_signal(face_list_cycle[0], m, face_det_results)
|
||||
|
||||
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
||||
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
pred = model(mel_batch, img_batch)
|
||||
|
||||
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
||||
for p, f, c in zip(pred, frames, coords):
|
||||
y1, y2, x1, x2 = c
|
||||
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
|
||||
|
||||
f[y1:y2, x1:x2] = p
|
||||
# name = "%04d" % j
|
||||
# cv2.imwrite(f'temp/images/{j}.jpg', p)
|
||||
# j = j + 1
|
||||
p = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
|
||||
self._human.push_render_image(p)
|
||||
# out.write(f)
|
||||
|
||||
def push(self, chunk):
|
||||
self._queue.put(chunk)
|
@ -2,6 +2,7 @@
|
||||
|
||||
import logging
|
||||
import queue
|
||||
import time
|
||||
from queue import Queue
|
||||
from threading import Thread, Event
|
||||
|
||||
@ -28,25 +29,28 @@ class Chunk2Mal:
|
||||
def _on_run(self):
|
||||
logging.info('chunk2mal run')
|
||||
while self._exit_event.is_set():
|
||||
if self._audio_chunk_queue.empty():
|
||||
time.sleep(0.5)
|
||||
continue
|
||||
try:
|
||||
chunk, type_ = self.pull_chunk()
|
||||
chunk = self._audio_chunk_queue.get(block=True, timeout=1)
|
||||
self._chunks.append(chunk)
|
||||
self._human.push_audio_frames(chunk, type_)
|
||||
self._human.push_audio_frames(chunk, 0)
|
||||
if len(self._chunks) < 10:
|
||||
continue
|
||||
except queue.Empty:
|
||||
# print('Chunk2Mal queue.Empty')
|
||||
continue
|
||||
|
||||
if type_ == 0:
|
||||
continue
|
||||
|
||||
logging.info('np.concatenate')
|
||||
mel = audio.melspectrogram(chunk)
|
||||
inputs = np.concatenate(self._chunks) # [N * chunk]
|
||||
mel = audio.melspectrogram(inputs)
|
||||
if np.isnan(mel.reshape(-1)).sum() > 0:
|
||||
raise ValueError(
|
||||
'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
|
||||
|
||||
mel_step_size = 16
|
||||
|
||||
print('fps:', self._human.get_fps())
|
||||
mel_idx_multiplier = 80. / self._human.get_fps()
|
||||
print('mel_idx_multiplier:', mel_idx_multiplier)
|
||||
@ -55,10 +59,8 @@ class Chunk2Mal:
|
||||
while 1:
|
||||
start_idx = int(i * mel_idx_multiplier)
|
||||
if start_idx + mel_step_size > len(mel[0]):
|
||||
# mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
|
||||
self._human.push_mel_chunks_queue(mel[:, len(mel[0]) - mel_step_size:])
|
||||
break
|
||||
# mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size])
|
||||
self._human.push_mel_chunks_queue(mel[:, start_idx: start_idx + mel_step_size])
|
||||
i += 1
|
||||
|
||||
|
@ -7,6 +7,7 @@ import edge_tts
|
||||
import numpy as np
|
||||
import pyaudio
|
||||
import soundfile
|
||||
import sounddevice
|
||||
import resampy
|
||||
import queue
|
||||
from io import BytesIO
|
||||
@ -23,18 +24,16 @@ class TTSBase:
|
||||
self._human = human
|
||||
self._thread = None
|
||||
self._queue = Queue()
|
||||
self._exit_event = None
|
||||
self._io_stream = BytesIO()
|
||||
self._sample_rate = 16000
|
||||
self._chunk_len = self._sample_rate // self._human.get_fps()
|
||||
self._chunk_len = self._human.get_audio_sample_rate() // self._human.get_fps()
|
||||
|
||||
self._exit_event = Event()
|
||||
self._thread = Thread(target=self._on_run)
|
||||
self._exit_event.set()
|
||||
self._thread.start()
|
||||
self._pcm_player = pyaudio.PyAudio()
|
||||
self._pcm_stream = self._pcm_player.open(format=pyaudio.paInt16,
|
||||
channels=1, rate=16000, output=True)
|
||||
# self._pcm_player = pyaudio.PyAudio()
|
||||
# self._pcm_stream = self._pcm_player.open(format=pyaudio.paInt16,
|
||||
# channels=1, rate=24000, output=True)
|
||||
logging.info('tts start')
|
||||
|
||||
def _on_run(self):
|
||||
@ -56,16 +55,24 @@ class TTSBase:
|
||||
self._io_stream.seek(0)
|
||||
stream = self.__create_bytes_stream(self._io_stream)
|
||||
stream_len = stream.shape[0]
|
||||
# try:
|
||||
# sounddevice.play(stream, samplerate=self._human.get_audio_sample_rate())
|
||||
# sounddevice.wait() # 等待音频播放完毕
|
||||
# except Exception as e:
|
||||
# logger.error(f"播放音频出错: {e}") playrec
|
||||
index = 0
|
||||
while stream_len >= self._chunk_len:
|
||||
audio_chunk = stream[index:index + self._chunk_len]
|
||||
# sounddevice.play(audio_chunk, samplerate=self._human.get_audio_sample_rate())
|
||||
# self._pcm_stream.write(audio_chunk)
|
||||
# self._pcm_stream.write(AudioSegment.from_mp3(audio_chunk))
|
||||
# self._pcm_stream.write(audio_chunk.tobytes())
|
||||
# self._human.push_audio_chunk(audio_chunk)
|
||||
# self._human.push_mel_chunks_queue(audio_chunk)
|
||||
self._human.push_audio_chunk(audio_chunk)
|
||||
stream_len -= self._chunk_len
|
||||
index += self._chunk_len
|
||||
self._io_stream.seek(0)
|
||||
self._io_stream.truncate()
|
||||
|
||||
def __create_bytes_stream(self, io_stream):
|
||||
stream, sample_rate = soundfile.read(io_stream)
|
||||
@ -76,29 +83,34 @@ class TTSBase:
|
||||
logger.warning(f'tts audio has {stream.shape[1]} channels, only use the first')
|
||||
stream = stream[:, 1]
|
||||
|
||||
if sample_rate != self._sample_rate and stream.shape[0] > 0:
|
||||
logger.warning(f'tts audio sample rate is {sample_rate}, resample to {self._sample_rate}')
|
||||
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self._sample_rate)
|
||||
if sample_rate != self._human.get_audio_sample_rate() and stream.shape[0] > 0:
|
||||
logger.warning(f'tts audio sample rate is {sample_rate}, resample to {self._human.get_audio_sample_rate() }')
|
||||
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self._human.get_audio_sample_rate() )
|
||||
|
||||
return stream
|
||||
|
||||
async def __on_request(self, voice, txt):
|
||||
communicate = edge_tts.Communicate(txt, voice)
|
||||
first = True
|
||||
# total_data = b''
|
||||
# CHUNK_SIZE = self._chunk_len
|
||||
total_data = b''
|
||||
CHUNK_SIZE = self._chunk_len
|
||||
async for chunk in communicate.stream():
|
||||
if chunk["type"] == "audio" and chunk["data"]:
|
||||
self._io_stream.write(chunk['data'])
|
||||
# total_data += chunk["data"]
|
||||
# if len(total_data) >= CHUNK_SIZE:
|
||||
data = chunk['data']
|
||||
self._io_stream.write(data)
|
||||
elif chunk["type"] == "WordBoundary":
|
||||
pass
|
||||
'''
|
||||
total_data += chunk["data"]
|
||||
if len(total_data) >= CHUNK_SIZE:
|
||||
# print(f"Time elapsed: {time.time() - start_time:.2f} seconds") # Print time
|
||||
# audio_data = AudioSegment.from_mp3(BytesIO(total_data[:CHUNK_SIZE])) #.raw_data
|
||||
# audio_data = audio_data.set_frame_rate(self._human.get_audio_sample_rate())
|
||||
audio_data = AudioSegment.from_mp3(BytesIO(total_data[:CHUNK_SIZE])) #.raw_data
|
||||
audio_data = audio_data.set_frame_rate(self._human.get_audio_sample_rate())
|
||||
# self._human.push_audio_chunk(audio_data)
|
||||
# self._pcm_stream.write(audio_data.raw_data)
|
||||
self._pcm_stream.write(audio_data.raw_data)
|
||||
# play_audio(total_data[:CHUNK_SIZE], stream) # Play first CHUNK_SIZE bytes
|
||||
# total_data = total_data[CHUNK_SIZE:] # Remove played data
|
||||
total_data = total_data[CHUNK_SIZE:] # Remove played data
|
||||
'''
|
||||
|
||||
# if first:
|
||||
# first = False
|
||||
@ -106,10 +118,12 @@ class TTSBase:
|
||||
# if chuck['type'] == 'audio':
|
||||
# # self._io_stream.write(chuck['data'])
|
||||
# self._io_stream.write(AudioSegment.from_mp3(BytesIO(total_data[:CHUNK_SIZE])).raw_data)
|
||||
|
||||
# if len(total_data) > 0:
|
||||
# self._pcm_stream.write(AudioSegment.from_mp3(BytesIO(total_data)).raw_data)
|
||||
# audio_data = AudioSegment.from_mp3(BytesIO(total_data)) # .raw_data
|
||||
# audio_data = audio_data.set_frame_rate(self._human.get_audio_sample_rate())
|
||||
# self._pcm_stream.write(audio_data.raw_data)
|
||||
# self._human.push_audio_chunk(audio_data)
|
||||
# self._io_stream.write(AudioSegment.from_mp3(BytesIO(total_data)).raw_data)
|
||||
|
||||
|
5
ui.py
5
ui.py
@ -63,10 +63,11 @@ class App(customtkinter.CTk):
|
||||
self._human.on_destroy()
|
||||
|
||||
def play_audio(self):
|
||||
# return
|
||||
if self._is_play_audio:
|
||||
return
|
||||
self._is_play_audio = True
|
||||
file = os.path.curdir + '/audio/audio1.wav'
|
||||
file = os.path.curdir + '/audio/test.wav'
|
||||
print(file)
|
||||
winsound.PlaySound(file, winsound.SND_ASYNC or winsound.SND_FILENAME)
|
||||
# playsound(file)
|
||||
@ -104,7 +105,7 @@ class App(customtkinter.CTk):
|
||||
height = self.winfo_height() * 0.5
|
||||
self._canvas.create_image(width, height, anchor=customtkinter.CENTER, image=imgtk)
|
||||
self._canvas.update()
|
||||
self.after(34, self._render)
|
||||
self.after(33, self._render)
|
||||
|
||||
def request_tts(self):
|
||||
content = self.entry.get()
|
||||
|
Loading…
Reference in New Issue
Block a user