#encoding = utf8 import logging import os import cv2 import numpy as np import torch from tqdm import tqdm from PIL import Image import face_detection from models import Wav2Lip logger = logging.getLogger(__name__) def mirror_index(size, index): # size = len(self.coord_list_cycle) turn = index // size res = index % size if turn % 2 == 0: return res else: return size - res - 1 def read_image(path): image = Image.open(path) return image def read_images(img_list): frames = [] print('reading images...') for img_path in tqdm(img_list): print(f'read image path:{img_path}') # frame = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) frame = Image.open(img_path) # frame = frame.convert("RGBA") frame = np.array(frame) frames.append(frame) return frames def read_files_path(path): file_paths = [] files = os.listdir(path) for file in files: if not os.path.isdir(file) and file.endswith('.png') or file.endswith('.jpg'): file_paths.append(os.path.join(path, file)) return file_paths def get_smoothened_boxes(boxes, t): for i in range(len(boxes)): if i + t > len(boxes): window = boxes[len(boxes) - t:] else: window = boxes[i: i + t] boxes[i] = np.mean(window, axis=0) return boxes def datagen_signal(frame, mel, face_det_results, img_size, wav2lip_batch_size=128): img_batch, mel_batch, frame_batch, coord_batch = [], [], [], [] idx = 0 frame_to_save = frame.copy() face, coord = face_det_results[idx].copy() face = cv2.resize(face, (img_size, img_size)) for i, m in enumerate(mel): img_batch.append(face) mel_batch.append(m) frame_batch.append(frame_to_save) coord_batch.append(coord) if len(img_batch) >= wav2lip_batch_size: img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) img_masked = img_batch.copy() img_masked[:, img_size // 2:] = 0 img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) return img_batch, mel_batch, frame_batch, coord_batch if len(img_batch) > 0: img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) img_masked = img_batch.copy() img_masked[:, img_size//2:] = 0 img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) return img_batch, mel_batch, frame_batch, coord_batch def face_detect(images, device): detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device=device) batch_size = 16 while 1: predictions = [] try: for i in range(0, len(images), batch_size): predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size]))) except RuntimeError: if batch_size == 1: raise RuntimeError( 'Image too big to run face detection on GPU. Please use the --resize_factor argument') batch_size //= 2 print('Recovering from OOM error; New batch size: {}'.format(batch_size)) continue break results = [] pad_y1, pad_y2, pad_x1, pad_x2 = [0, 10, 0, 0] for rect, image in zip(predictions, images): if rect is None: cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected. raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') y1 = max(0, rect[1] - pad_y1) y2 = min(image.shape[0], rect[3] + pad_y2) x1 = max(0, rect[0] - pad_x1) x2 = min(image.shape[1], rect[2] + pad_x2) results.append([x1, y1, x2, y2]) boxes = np.array(results) if not False: boxes = get_smoothened_boxes(boxes, t=5) results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] del detector return results def get_device(): return 'cuda' if torch.cuda.is_available() else 'cpu' def _load(checkpoint_path): device = get_device if device == 'cuda': checkpoint = torch.load(checkpoint_path) else: checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) return checkpoint def load_model(path): model = Wav2Lip() print("Load checkpoint from: {}".format(path)) logging.info(f'Load checkpoint from {path}') checkpoint = _load(path) s = checkpoint["state_dict"] new_s = {} for k, v in s.items(): new_s[k.replace('module.', '')] = v model.load_state_dict(new_s) device = get_device() model = model.to(device) return model.eval() def load_avatar(path, img_size, device): print(f'load avatar:{path}') face_images_path = path face_images_path = read_files_path(face_images_path) full_list_cycle = read_images(face_images_path) face_det_results = face_detect(full_list_cycle, device) face_frames = [] coord_frames = [] for face, coord in face_det_results: resized_crop_frame = cv2.resize(face[:, :, :3], (img_size, img_size)) face_frames.append(resized_crop_frame) coord_frames.append(coord) return full_list_cycle, face_frames, coord_frames def config_logging(file_name: str, console_level: int = logging.INFO, file_level: int = logging.DEBUG): file_handler = logging.FileHandler(file_name, mode='a', encoding="utf8") file_handler.setFormatter(logging.Formatter( '%(asctime)s [%(levelname)s] %(module)s.%(lineno)d %(name)s:\t%(message)s' )) file_handler.setLevel(file_level) console_handler = logging.StreamHandler() console_handler.setFormatter(logging.Formatter( '[%(asctime)s %(levelname)s] %(message)s', datefmt="%Y/%m/%d %H:%M:%S" )) console_handler.setLevel(console_level) logging.basicConfig( level=min(console_level, file_level), handlers=[file_handler, console_handler], ) def object_stop(obj): if obj is not None: obj.stop()