#encoding = utf8
import io
import logging

import multiprocessing as mp
import platform, subprocess
import queue
import threading
import time


import numpy as np
import pyaudio

import audio
import face_detection
import utils
from infer import Infer
from models import Wav2Lip
from tts.Chunk2Mal import Chunk2Mal
import torch
import cv2
from tqdm import tqdm
from queue import Queue

from tts.EdgeTTS import EdgeTTS
from tts.TTSBase import TTSBase

device = 'cuda' if torch.cuda.is_available() else 'cpu'


def _load(checkpoint_path):
    if device == 'cuda':
        checkpoint = torch.load(checkpoint_path)
    else:
        checkpoint = torch.load(checkpoint_path,
                                map_location=lambda storage, loc: storage)
    return checkpoint


def load_model(path):
    model = Wav2Lip()
    print("Load checkpoint from: {}".format(path))
    logging.info(f'Load checkpoint from {path}')
    checkpoint = _load(path)
    s = checkpoint["state_dict"]
    new_s = {}
    for k, v in s.items():
        new_s[k.replace('module.', '')] = v
    model.load_state_dict(new_s)
    model = model.to(device)
    return model.eval()


def read_images(img_list):
    frames = []
    print('reading images...')
    for img_path in tqdm(img_list):
        print(f'read image path:{img_path}')
        frame = cv2.imread(img_path)
        frames.append(frame)
    return frames


def __mirror_index(size, index):
    # size = len(self.coord_list_cycle)
    turn = index // size
    res = index % size
    if turn % 2 == 0:
        return res
    else:
        return size - res - 1


#  python.exe .\inference.py --checkpoint_path .\checkpoints\wav2lip.pth --face
#  .\face\img00016.jpg --audio .\audio\audio1.wav
def inference(render_event, batch_size, face_images_path, audio_feat_queue, audio_out_queue, res_frame_queue):
    logging.info(f'Using {device} for inference.')
    print(f'Using {device} for inference.')

    print(f'face_images_path: {face_images_path}')

    model = load_model(r'.\checkpoints\wav2lip.pth')
    face_list_cycle = read_images(face_images_path)
    face_images_length = len(face_list_cycle)
    logging.info(f'face images length: {face_images_length}')
    print(f'face images length: {face_images_length}')

    length = len(face_list_cycle)
    index = 0
    count = 0
    count_time = 0
    logging.info('start inference')
    print(f'start inference: {render_event.is_set()}')
    while render_event.is_set():
        mel_batch = []
        try:
            mel_batch = audio_feat_queue.get(block=True, timeout=1)
        except queue.Empty:
            continue

        audio_frames = []
        is_all_silence = True
        for _ in range(batch_size * 2):
            frame, type = audio_out_queue.get()
            audio_frames.append((frame, type))

            if type == 0:
                is_all_silence = False

        print(f'is_all_silence {is_all_silence}')
        if is_all_silence:
            for i in range(batch_size):
                res_frame_queue.put((None, __mirror_index(length, index), audio_frames[i*2:i*2+2]))
                index = index + 1
        else:
            t = time.perf_counter()
            image_batch = []
            for i in range(batch_size):
                idx = __mirror_index(length, index + i)
                face = face_list_cycle[idx]
                image_batch.append(face)
            image_batch, mel_batch = np.asarray(image_batch), np.asarray(mel_batch)

            image_masked = image_batch.copy()
            image_masked[:, face.shape[0]//2:] = 0

            image_batch = np.concatenate((image_masked, image_batch), axis=3) / 255.
            mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

            image_batch = torch.FloatTensor(np.transpose(image_batch, (0, 3, 1, 2))).to(device)
            mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)

            with torch.no_grad():
                pred = model(mel_batch, image_batch)
            pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.

            count_time += (time.perf_counter() - t)
            count += batch_size
            if count >= 100:
                logging.info(f"------actual avg infer fps:{count/count_time:.4f}")
                count = 0
                count_time = 0

            for i, res_frame in enumerate(pred):
                res_frame_queue.put((res_frame, __mirror_index(length, index), audio_frames[i*2 : i*2+2]))
                index = index + 1

    logging.info('finish inference')


def get_smoothened_boxes(boxes, T):
    for i in range(len(boxes)):
        if i + T > len(boxes):
            window = boxes[len(boxes) - T:]
        else:
            window = boxes[i : i + T]
        boxes[i] = np.mean(window, axis=0)
    return boxes


def face_detect(images):
    detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
                                            flip_input=False, device=device)
    batch_size = 16

    while 1:
        predictions = []
        try:
            for i in range(0, len(images), batch_size):
                predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
        except RuntimeError:
            if batch_size == 1:
                raise RuntimeError(
                    'Image too big to run face detection on GPU. Please use the --resize_factor argument')
            batch_size //= 2
            print('Recovering from OOM error; New batch size: {}'.format(batch_size))
            continue
        break

    results = []
    pady1, pady2, padx1, padx2 = [0, 10, 0, 0]
    for rect, image in zip(predictions, images):
        if rect is None:
            cv2.imwrite('temp/faulty_frame.jpg', image)  # check this frame where the face was not detected.
            raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')

        y1 = max(0, rect[1] - pady1)
        y2 = min(image.shape[0], rect[3] + pady2)
        x1 = max(0, rect[0] - padx1)
        x2 = min(image.shape[1], rect[2] + padx2)

        results.append([x1, y1, x2, y2])

    boxes = np.array(results)
    if not False: boxes = get_smoothened_boxes(boxes, T=5)
    results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]

    del detector
    return results


img_size = 96
wav2lip_batch_size = 128


def datagen(frames, mels):
    img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

    face_det_results = face_detect(frames)  # BGR2RGB for CNN face detection

    # for i, m in enumerate(mels):
    for i in range(mels.qsize()):
        idx = 0 if True else i%len(frames)
        frame_to_save = frames[__mirror_index(1, i)].copy()
        face, coords = face_det_results[idx].copy()

        face = cv2.resize(face, (img_size, img_size))
        m = mels.get()

        img_batch.append(face)
        mel_batch.append(m)
        frame_batch.append(frame_to_save)
        coords_batch.append(coords)

        if len(img_batch) >= wav2lip_batch_size:
            img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

            img_masked = img_batch.copy()
            img_masked[:, img_size//2:] = 0
            img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
            mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

            yield img_batch, mel_batch, frame_batch, coords_batch
            img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

    if len(img_batch) > 0:
        img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
        img_masked = img_batch.copy()
        img_masked[:, img_size//2:] = 0

        img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
        mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

        yield img_batch, mel_batch, frame_batch, coords_batch


def datagen_signal(frame, mel, face_det_results):
    img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

    # for i, m in enumerate(mels):
    idx = 0
    frame_to_save = frame.copy()
    face, coords = face_det_results[idx].copy()

    face = cv2.resize(face, (img_size, img_size))
    m = mel

    img_batch.append(face)
    mel_batch.append(m)
    frame_batch.append(frame_to_save)
    coords_batch.append(coords)

    if len(img_batch) >= wav2lip_batch_size:
        img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

        img_masked = img_batch.copy()
        img_masked[:, img_size // 2:] = 0
        img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
        mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

        return img_batch, mel_batch, frame_batch, coords_batch

    if len(img_batch) > 0:
        img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
        img_masked = img_batch.copy()
        img_masked[:, img_size//2:] = 0

        img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
        mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

        return img_batch, mel_batch, frame_batch, coords_batch


# 从字节流加载音频数据
def load_audio_from_bytes(byte_data):
    # 使用 BytesIO 创建一个字节流
    with io.BytesIO(byte_data) as b:
        wav = audio.load_wav(b, 16000)  # 根据实际库的参数进行调整
    return wav

# 假设你有音频文件的字节数据


class Human:
    def __init__(self):
        self._fps = 25  # 20 ms per frame
        self._batch_size = 16
        self._sample_rate = 16000
        self._stride_left_size = 10
        self._stride_right_size = 10
        self._feat_queue = mp.Queue(2)
        self._output_queue = mp.Queue()
        self._res_frame_queue = mp.Queue(self._batch_size * 2)

        self._chunk_2_mal = Chunk2Mal(self)
        self._tts = TTSBase(self)
        self._infer = Infer(self)

        self.mel_chunks_queue_ = Queue()
        self.audio_chunks_queue_ = Queue()
        self._test_image_queue = Queue()

        self._thread = None
        thread = threading.Thread(target=self.test)
        thread.start()
        # self.test()
        # self.play_pcm()

        # face_images_path = r'./face/'
        # self._face_image_paths = utils.read_files_path(face_images_path)
        # print(self._face_image_paths)
        # self.render_event = mp.Event()
        # mp.Process(target=inference, args=(self.render_event, self._batch_size, self._face_image_paths,
        #                                    self._feat_queue, self._output_queue, self._res_frame_queue,
        #                                    )).start()
        # self.render_event.set()

    # def play_pcm(self):
    #     p = pyaudio.PyAudio()
    #     stream = p.open(format=p.get_format_from_width(2), channels=1, rate=16000, output=True)
    #     file1 = r'./audio/en_weather.pcm'
    #
    #     # 将 pcm 数据直接写入 PyAudio 的数据流
    #     with open(file1, "rb") as f:
    #         stream.write(f.read())
    #
    #     stream.stop_stream()
    #     stream.close()
    #     p.terminate()

    def test(self):
        wav = audio.load_wav(r'./audio/test.wav', 16000)
        # with open(r'./audio/test.wav', 'rb') as f:
        #     byte_data = f.read()
        #
        # byte_data = byte_data[16:]
        # inputs = np.concatenate(byte_data)  # [N * chunk]
        # wav = load_audio_from_bytes(inputs)
        mel = audio.melspectrogram(wav)
        if np.isnan(mel.reshape(-1)).sum() > 0:
            raise ValueError(
                'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')

        mel_step_size = 16

        print('fps:',  self._fps)
        mel_idx_multiplier = 80. / self._fps
        print('mel_idx_multiplier:', mel_idx_multiplier)
        i = 0
        while 1:
            start_idx = int(i * mel_idx_multiplier)
            if start_idx + mel_step_size > len(mel[0]):
                # mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
                self.mel_chunks_queue_.put(mel[:, len(mel[0]) - mel_step_size:])
                break
            # mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size])
            self.mel_chunks_queue_.put(mel[:, start_idx: start_idx + mel_step_size])
            i += 1

        batch_size = 128
        print('batch_size:', batch_size, ' mel_chunks len:', self.mel_chunks_queue_.qsize())

        face_images_path = r'./face/'
        face_images_path = utils.read_files_path(face_images_path)
        face_list_cycle = read_images(face_images_path)
        face_images_length = len(face_list_cycle)
        logging.info(f'face images length: {face_images_length}')
        print(f'face images length: {face_images_length}')

        model = load_model(r'.\checkpoints\wav2lip.pth')
        print("Model loaded")

        frame_h, frame_w = face_list_cycle[0].shape[:-1]
        # out = cv2.VideoWriter('temp/resul_tttt.avi',
        #                       cv2.VideoWriter_fourcc(*'DIVX'), 25, (frame_w, frame_h))

        face_det_results = face_detect(face_list_cycle)

        j = 0
        while not self.mel_chunks_queue_.empty():
            print("self.mel_chunks_queue_ len:", self.mel_chunks_queue_.qsize())
            m = self.mel_chunks_queue_.get()
            img_batch, mel_batch, frames, coords = datagen_signal(face_list_cycle[0], m, face_det_results)

            img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
            mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)

            with torch.no_grad():
                pred = model(mel_batch, img_batch)

            pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
            for p, f, c in zip(pred, frames, coords):
                y1, y2, x1, x2 = c
                p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))

                f[y1:y2, x1:x2] = p
                # name = "%04d" % j
                # cv2.imwrite(f'temp/images/{j}.jpg', p)
                # j = j + 1
                p = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
                self._test_image_queue.put(p)
                # out.write(f)
        #
        # out.release()
        # command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format('./audio/audio1.wav', 'temp/resul_tttt.avi',
        #                                                               'temp/resul_tttt.mp4')
        # subprocess.call(command, shell=platform.system() != 'Windows')


        # gen = datagen(face_list_cycle, self.mel_chunks_queue_)

    def get_fps(self):
        return self._fps

    def get_batch_size(self):
        return self._batch_size

    def get_audio_sample_rate(self):
        return self._sample_rate

    def get_stride_left_size(self):
        return self._stride_left_size

    def get_stride_right_size(self):
        return self._stride_right_size

    def on_destroy(self):
        # self.render_event.clear()
        # self._chunk_2_mal.stop()
        # if self._tts is not None:
        #     self._tts.stop()
        logging.info('human destroy')

    def read(self, txt):
        if self._tts is None:
            logging.warning('tts is none')
            return
        self._tts.push_txt(txt)

    def push_audio_chunk(self, audio_chunk):
        self._chunk_2_mal.push_chunk(audio_chunk)

    def push_mel_chunks_queue(self, mel_chunk):
        self._infer.push(mel_chunk)
        # self.audio_chunks_queue_.put(audio_chunk)

    def push_feat_queue(self, mel_chunks):
        print("push_feat_queue")
        self._feat_queue.put(mel_chunks)

    def push_audio_frames(self, chunk, type_):
        print("push_audio_frames")
        self._output_queue.put((chunk, type_))

    def push_render_image(self, image):
        self._test_image_queue.put(image)

    def render(self):
        try:
            # img, aud = self._res_frame_queue.get(block=True, timeout=.3)
            img = self._test_image_queue.get(block=True, timeout=.3)
        except queue.Empty:
            # print('render queue.Empty:')
            return None
        return img

    # def pull_audio_chunk(self):
    #     try:
    #         chunk = self._audio_chunk_queue.get(block=True, timeout=1.0)
    #         type = 1
    #     except queue.Empty:
    #         chunk = np.zeros(self._chunk, dtype=np.float32)
    #         type = 0
    #     return chunk, type