447 lines
15 KiB
Python
447 lines
15 KiB
Python
#encoding = utf8
|
|
import logging
|
|
|
|
import multiprocessing as mp
|
|
import platform, subprocess
|
|
import queue
|
|
import threading
|
|
import time
|
|
|
|
|
|
import numpy as np
|
|
|
|
import audio
|
|
import face_detection
|
|
import utils
|
|
from models import Wav2Lip
|
|
from tts.Chunk2Mal import Chunk2Mal
|
|
import torch
|
|
import cv2
|
|
from tqdm import tqdm
|
|
from queue import Queue
|
|
|
|
from tts.EdgeTTS import EdgeTTS
|
|
from tts.TTSBase import TTSBase
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
def _load(checkpoint_path):
|
|
if device == 'cuda':
|
|
checkpoint = torch.load(checkpoint_path)
|
|
else:
|
|
checkpoint = torch.load(checkpoint_path,
|
|
map_location=lambda storage, loc: storage)
|
|
return checkpoint
|
|
|
|
|
|
def load_model(path):
|
|
model = Wav2Lip()
|
|
print("Load checkpoint from: {}".format(path))
|
|
logging.info(f'Load checkpoint from {path}')
|
|
checkpoint = _load(path)
|
|
s = checkpoint["state_dict"]
|
|
new_s = {}
|
|
for k, v in s.items():
|
|
new_s[k.replace('module.', '')] = v
|
|
model.load_state_dict(new_s)
|
|
model = model.to(device)
|
|
return model.eval()
|
|
|
|
|
|
def read_images(img_list):
|
|
frames = []
|
|
print('reading images...')
|
|
for img_path in tqdm(img_list):
|
|
print(f'read image path:{img_path}')
|
|
frame = cv2.imread(img_path)
|
|
frames.append(frame)
|
|
return frames
|
|
|
|
|
|
def __mirror_index(size, index):
|
|
# size = len(self.coord_list_cycle)
|
|
turn = index // size
|
|
res = index % size
|
|
if turn % 2 == 0:
|
|
return res
|
|
else:
|
|
return size - res - 1
|
|
|
|
|
|
# python.exe .\inference.py --checkpoint_path .\checkpoints\wav2lip.pth --face
|
|
# .\face\img00016.jpg --audio .\audio\audio1.wav
|
|
def inference(render_event, batch_size, face_images_path, audio_feat_queue, audio_out_queue, res_frame_queue):
|
|
logging.info(f'Using {device} for inference.')
|
|
print(f'Using {device} for inference.')
|
|
|
|
print(f'face_images_path: {face_images_path}')
|
|
|
|
model = load_model(r'.\checkpoints\wav2lip.pth')
|
|
face_list_cycle = read_images(face_images_path)
|
|
face_images_length = len(face_list_cycle)
|
|
logging.info(f'face images length: {face_images_length}')
|
|
print(f'face images length: {face_images_length}')
|
|
|
|
length = len(face_list_cycle)
|
|
index = 0
|
|
count = 0
|
|
count_time = 0
|
|
logging.info('start inference')
|
|
print(f'start inference: {render_event.is_set()}')
|
|
while render_event.is_set():
|
|
mel_batch = []
|
|
try:
|
|
mel_batch = audio_feat_queue.get(block=True, timeout=1)
|
|
except queue.Empty:
|
|
continue
|
|
|
|
audio_frames = []
|
|
is_all_silence = True
|
|
for _ in range(batch_size * 2):
|
|
frame, type = audio_out_queue.get()
|
|
audio_frames.append((frame, type))
|
|
|
|
if type == 0:
|
|
is_all_silence = False
|
|
|
|
print(f'is_all_silence {is_all_silence}')
|
|
if is_all_silence:
|
|
for i in range(batch_size):
|
|
res_frame_queue.put((None, __mirror_index(length, index), audio_frames[i*2:i*2+2]))
|
|
index = index + 1
|
|
else:
|
|
t = time.perf_counter()
|
|
image_batch = []
|
|
for i in range(batch_size):
|
|
idx = __mirror_index(length, index + i)
|
|
face = face_list_cycle[idx]
|
|
image_batch.append(face)
|
|
image_batch, mel_batch = np.asarray(image_batch), np.asarray(mel_batch)
|
|
|
|
image_masked = image_batch.copy()
|
|
image_masked[:, face.shape[0]//2:] = 0
|
|
|
|
image_batch = np.concatenate((image_masked, image_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
image_batch = torch.FloatTensor(np.transpose(image_batch, (0, 3, 1, 2))).to(device)
|
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
|
|
|
with torch.no_grad():
|
|
pred = model(mel_batch, image_batch)
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
|
|
|
count_time += (time.perf_counter() - t)
|
|
count += batch_size
|
|
if count >= 100:
|
|
logging.info(f"------actual avg infer fps:{count/count_time:.4f}")
|
|
count = 0
|
|
count_time = 0
|
|
|
|
for i, res_frame in enumerate(pred):
|
|
res_frame_queue.put((res_frame, __mirror_index(length, index), audio_frames[i*2 : i*2+2]))
|
|
index = index + 1
|
|
|
|
logging.info('finish inference')
|
|
|
|
|
|
def get_smoothened_boxes(boxes, T):
|
|
for i in range(len(boxes)):
|
|
if i + T > len(boxes):
|
|
window = boxes[len(boxes) - T:]
|
|
else:
|
|
window = boxes[i : i + T]
|
|
boxes[i] = np.mean(window, axis=0)
|
|
return boxes
|
|
|
|
|
|
def face_detect(images):
|
|
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
|
flip_input=False, device=device)
|
|
|
|
batch_size = 16
|
|
|
|
while 1:
|
|
predictions = []
|
|
try:
|
|
for i in range(0, len(images), batch_size):
|
|
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
|
except RuntimeError:
|
|
if batch_size == 1:
|
|
raise RuntimeError(
|
|
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
|
|
batch_size //= 2
|
|
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
|
|
continue
|
|
break
|
|
|
|
results = []
|
|
pady1, pady2, padx1, padx2 = [0, 10, 0, 0]
|
|
for rect, image in zip(predictions, images):
|
|
if rect is None:
|
|
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
|
|
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
|
|
|
|
y1 = max(0, rect[1] - pady1)
|
|
y2 = min(image.shape[0], rect[3] + pady2)
|
|
x1 = max(0, rect[0] - padx1)
|
|
x2 = min(image.shape[1], rect[2] + padx2)
|
|
|
|
results.append([x1, y1, x2, y2])
|
|
|
|
boxes = np.array(results)
|
|
if not False: boxes = get_smoothened_boxes(boxes, T=5)
|
|
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
|
|
|
del detector
|
|
return results
|
|
|
|
|
|
img_size = 96
|
|
wav2lip_batch_size = 128
|
|
|
|
|
|
def datagen(frames, mels):
|
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
|
|
|
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
|
|
|
|
# for i, m in enumerate(mels):
|
|
for i in range(mels.qsize()):
|
|
idx = 0 if True else i%len(frames)
|
|
frame_to_save = frames[__mirror_index(1, i)].copy()
|
|
face, coords = face_det_results[idx].copy()
|
|
|
|
face = cv2.resize(face, (img_size, img_size))
|
|
m = mels.get()
|
|
|
|
img_batch.append(face)
|
|
mel_batch.append(m)
|
|
frame_batch.append(frame_to_save)
|
|
coords_batch.append(coords)
|
|
|
|
if len(img_batch) >= wav2lip_batch_size:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, img_size//2:] = 0
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
|
|
|
if len(img_batch) > 0:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, img_size//2:] = 0
|
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
|
|
|
|
|
def datagen_signal(frame, mel, face_det_results):
|
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
|
|
|
# for i, m in enumerate(mels):
|
|
idx = 0
|
|
frame_to_save = frame.copy()
|
|
face, coords = face_det_results[idx].copy()
|
|
|
|
face = cv2.resize(face, (img_size, img_size))
|
|
m = mel
|
|
|
|
img_batch.append(face)
|
|
mel_batch.append(m)
|
|
frame_batch.append(frame_to_save)
|
|
coords_batch.append(coords)
|
|
|
|
if len(img_batch) >= wav2lip_batch_size:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, img_size // 2:] = 0
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
return img_batch, mel_batch, frame_batch, coords_batch
|
|
|
|
if len(img_batch) > 0:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, img_size//2:] = 0
|
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
return img_batch, mel_batch, frame_batch, coords_batch
|
|
|
|
|
|
class Human:
|
|
def __init__(self):
|
|
self._fps = 25 # 20 ms per frame
|
|
self._batch_size = 16
|
|
self._sample_rate = 16000
|
|
self._stride_left_size = 10
|
|
self._stride_right_size = 10
|
|
self._feat_queue = mp.Queue(2)
|
|
self._output_queue = mp.Queue()
|
|
self._res_frame_queue = mp.Queue(self._batch_size * 2)
|
|
|
|
# self._chunk_2_mal = Chunk2Mal(self)
|
|
# self._tts = TTSBase(self)
|
|
|
|
self.mel_chunks_queue_ = Queue()
|
|
self._test_image_queue = Queue()
|
|
|
|
self._thread = None
|
|
# self.test()
|
|
|
|
# face_images_path = r'./face/'
|
|
# self._face_image_paths = utils.read_files_path(face_images_path)
|
|
# print(self._face_image_paths)
|
|
# self.render_event = mp.Event()
|
|
# mp.Process(target=inference, args=(self.render_event, self._batch_size, self._face_image_paths,
|
|
# self._feat_queue, self._output_queue, self._res_frame_queue,
|
|
# )).start()
|
|
# self.render_event.set()
|
|
|
|
def test(self):
|
|
wav = audio.load_wav(r'./audio/audio1.wav', 16000)
|
|
mel = audio.melspectrogram(wav)
|
|
if np.isnan(mel.reshape(-1)).sum() > 0:
|
|
raise ValueError(
|
|
'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
|
|
|
|
mel_step_size = 16
|
|
|
|
print('fps:', self._fps)
|
|
mel_idx_multiplier = 80. / self._fps
|
|
print('mel_idx_multiplier:', mel_idx_multiplier)
|
|
i = 0
|
|
while 1:
|
|
start_idx = int(i * mel_idx_multiplier)
|
|
if start_idx + mel_step_size > len(mel[0]):
|
|
# mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
|
|
self.mel_chunks_queue_.put(mel[:, len(mel[0]) - mel_step_size:])
|
|
break
|
|
# mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size])
|
|
self.mel_chunks_queue_.put(mel[:, start_idx: start_idx + mel_step_size])
|
|
i += 1
|
|
|
|
batch_size = 128
|
|
print('batch_size:', batch_size, ' mel_chunks len:', self.mel_chunks_queue_.qsize())
|
|
|
|
face_images_path = r'./face/'
|
|
face_images_path = utils.read_files_path(face_images_path)
|
|
face_list_cycle = read_images(face_images_path)
|
|
face_images_length = len(face_list_cycle)
|
|
logging.info(f'face images length: {face_images_length}')
|
|
print(f'face images length: {face_images_length}')
|
|
|
|
model = load_model(r'.\checkpoints\wav2lip.pth')
|
|
print("Model loaded")
|
|
|
|
frame_h, frame_w = face_list_cycle[0].shape[:-1]
|
|
out = cv2.VideoWriter('temp/resul_tttt.avi',
|
|
cv2.VideoWriter_fourcc(*'DIVX'), 25, (frame_w, frame_h))
|
|
|
|
face_det_results = face_detect(face_list_cycle)
|
|
|
|
j = 0
|
|
while not self.mel_chunks_queue_.empty():
|
|
print("self.mel_chunks_queue_ len:", self.mel_chunks_queue_.qsize())
|
|
m = self.mel_chunks_queue_.get()
|
|
img_batch, mel_batch, frames, coords = datagen_signal(face_list_cycle[0], m, face_det_results)
|
|
|
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
|
|
|
with torch.no_grad():
|
|
pred = model(mel_batch, img_batch)
|
|
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
|
for p, f, c in zip(pred, frames, coords):
|
|
y1, y2, x1, x2 = c
|
|
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
|
|
|
|
f[y1:y2, x1:x2] = p
|
|
# name = "%04d" % j
|
|
# cv2.imwrite(f'temp/images/{j}.jpg', p)
|
|
# j = j + 1
|
|
p = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
|
|
self._test_image_queue.put(p)
|
|
out.write(f)
|
|
|
|
out.release()
|
|
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format('./audio/audio1.wav', 'temp/resul_tttt.avi',
|
|
'temp/resul_tttt.mp4')
|
|
subprocess.call(command, shell=platform.system() != 'Windows')
|
|
|
|
|
|
# gen = datagen(face_list_cycle, self.mel_chunks_queue_)
|
|
|
|
def get_fps(self):
|
|
return self._fps
|
|
|
|
def get_batch_size(self):
|
|
return self._batch_size
|
|
|
|
def get_audio_sample_rate(self):
|
|
return self._sample_rate
|
|
|
|
def get_stride_left_size(self):
|
|
return self._stride_left_size
|
|
|
|
def get_stride_right_size(self):
|
|
return self._stride_right_size
|
|
|
|
def on_destroy(self):
|
|
# self.render_event.clear()
|
|
# self._chunk_2_mal.stop()
|
|
# if self._tts is not None:
|
|
# self._tts.stop()
|
|
logging.info('human destroy')
|
|
|
|
def read(self, txt):
|
|
# if self._tts is None:
|
|
# logging.warning('tts is none')
|
|
# return
|
|
|
|
if self._thread is None:
|
|
self._thread = threading.Thread(target=self.test)
|
|
self._thread.start()
|
|
# self._tts.push_txt(txt)
|
|
|
|
def push_audio_chunk(self, audio_chunk):
|
|
self._chunk_2_mal.push_chunk(audio_chunk)
|
|
|
|
def push_feat_queue(self, mel_chunks):
|
|
print("push_feat_queue")
|
|
self._feat_queue.put(mel_chunks)
|
|
|
|
def push_audio_frames(self, chunk, type_):
|
|
print("push_audio_frames")
|
|
self._output_queue.put((chunk, type_))
|
|
|
|
def render(self):
|
|
try:
|
|
# img, aud = self._res_frame_queue.get(block=True, timeout=.3)
|
|
img = self._test_image_queue.get(block=True, timeout=.3)
|
|
except queue.Empty:
|
|
# print('render queue.Empty:')
|
|
return None
|
|
return img
|
|
|
|
# def pull_audio_chunk(self):
|
|
# try:
|
|
# chunk = self._audio_chunk_queue.get(block=True, timeout=1.0)
|
|
# type = 1
|
|
# except queue.Empty:
|
|
# chunk = np.zeros(self._chunk, dtype=np.float32)
|
|
# type = 0
|
|
# return chunk, type
|