human/Human.py
2024-09-29 15:12:49 +08:00

509 lines
17 KiB
Python

#encoding = utf8
import io
import logging
import multiprocessing as mp
import platform, subprocess
import queue
import threading
import time
import numpy as np
import pyaudio
import audio
import face_detection
import utils
from infer import Infer
from models import Wav2Lip
from tts.Chunk2Mal import Chunk2Mal
import torch
import cv2
from tqdm import tqdm
from queue import Queue
from tts.EdgeTTS import EdgeTTS
from tts.TTSBase import TTSBase
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def _load(checkpoint_path):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2Lip()
print("Load checkpoint from: {}".format(path))
logging.info(f'Load checkpoint from {path}')
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
model = model.to(device)
return model.eval()
def read_images(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
print(f'read image path:{img_path}')
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def __mirror_index(size, index):
# size = len(self.coord_list_cycle)
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1
# python.exe .\inference.py --checkpoint_path .\checkpoints\wav2lip.pth --face
# .\face\img00016.jpg --audio .\audio\audio1.wav
def inference(render_event, batch_size, face_images_path, audio_feat_queue, audio_out_queue, res_frame_queue):
logging.info(f'Using {device} for inference.')
print(f'Using {device} for inference.')
print(f'face_images_path: {face_images_path}')
model = load_model(r'.\checkpoints\wav2lip.pth')
face_list_cycle = read_images(face_images_path)
face_images_length = len(face_list_cycle)
logging.info(f'face images length: {face_images_length}')
print(f'face images length: {face_images_length}')
length = len(face_list_cycle)
index = 0
count = 0
count_time = 0
logging.info('start inference')
print(f'start inference: {render_event.is_set()}')
while render_event.is_set():
mel_batch = []
try:
mel_batch = audio_feat_queue.get(block=True, timeout=1)
except queue.Empty:
continue
audio_frames = []
is_all_silence = True
for _ in range(batch_size * 2):
frame, type = audio_out_queue.get()
audio_frames.append((frame, type))
if type == 0:
is_all_silence = False
print(f'is_all_silence {is_all_silence}')
if is_all_silence:
for i in range(batch_size):
res_frame_queue.put((None, __mirror_index(length, index), audio_frames[i*2:i*2+2]))
index = index + 1
else:
t = time.perf_counter()
image_batch = []
for i in range(batch_size):
idx = __mirror_index(length, index + i)
face = face_list_cycle[idx]
image_batch.append(face)
image_batch, mel_batch = np.asarray(image_batch), np.asarray(mel_batch)
image_masked = image_batch.copy()
image_masked[:, face.shape[0]//2:] = 0
image_batch = np.concatenate((image_masked, image_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
image_batch = torch.FloatTensor(np.transpose(image_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, image_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
count_time += (time.perf_counter() - t)
count += batch_size
if count >= 100:
logging.info(f"------actual avg infer fps:{count/count_time:.4f}")
count = 0
count_time = 0
for i, res_frame in enumerate(pred):
res_frame_queue.put((res_frame, __mirror_index(length, index), audio_frames[i*2 : i*2+2]))
index = index + 1
logging.info('finish inference')
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(images):
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
batch_size = 16
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError(
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pady1, pady2, padx1, padx2 = [0, 10, 0, 0]
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not False: boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
img_size = 96
wav2lip_batch_size = 128
def datagen(frames, mels):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
# for i, m in enumerate(mels):
for i in range(mels.qsize()):
idx = 0 if True else i%len(frames)
frame_to_save = frames[__mirror_index(1, i)].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
m = mels.get()
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch
def datagen_signal(frame, mel, face_det_results):
img_batch, mel_batch, frame_batch, coord_batch = [], [], [], []
# for i, m in enumerate(mels):
idx = 0
frame_to_save = frame.copy()
face, coord = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
m = mel
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coord_batch.append(coord)
if len(img_batch) >= wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size // 2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
return img_batch, mel_batch, frame_batch, coord_batch
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
return img_batch, mel_batch, frame_batch, coord_batch
# 从字节流加载音频数据
def load_audio_from_bytes(byte_data):
# 使用 BytesIO 创建一个字节流
with io.BytesIO(byte_data) as b:
wav = audio.load_wav(b, 16000) # 根据实际库的参数进行调整
return wav
# 假设你有音频文件的字节数据
class Human:
def __init__(self):
self._fps = 25 # 40 ms per frame
self._batch_size = 16
self._sample_rate = 16000
self._stride_left_size = 10
self._stride_right_size = 10
self._feat_queue = mp.Queue(2)
self._output_queue = mp.Queue()
self._res_frame_queue = mp.Queue(self._batch_size * 2)
self._chunk_2_mal = Chunk2Mal(self)
self._tts = TTSBase(self)
self._infer = Infer(self)
self.mel_chunks_queue_ = Queue()
self.audio_chunks_queue_ = Queue()
self._test_image_queue = Queue()
#
self._thread = None
thread = threading.Thread(target=self.test)
thread.start()
# self.test()
# self.play_pcm()
# face_images_path = r'./face/'
# self._face_image_paths = utils.read_files_path(face_images_path)
# print(self._face_image_paths)
# self.render_event = mp.Event()
# mp.Process(target=inference, args=(self.render_event, self._batch_size, self._face_image_paths,
# self._feat_queue, self._output_queue, self._res_frame_queue,
# )).start()
# self.render_event.set()
# def play_pcm(self):
# p = pyaudio.PyAudio()
# stream = p.open(format=p.get_format_from_width(2), channels=1, rate=16000, output=True)
# file1 = r'./audio/en_weather.pcm'
#
# # 将 pcm 数据直接写入 PyAudio 的数据流
# with open(file1, "rb") as f:
# stream.write(f.read())
#
# stream.stop_stream()
# stream.close()
# p.terminate()
def inter(self, model, chunks, face_list_cycle, face_det_results, out, j):
inputs = np.concatenate(chunks) # [5 * chunk]
mel = audio.melspectrogram(inputs)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError(
'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_step_size = 16
print('fps:', self._fps)
mel_idx_multiplier = 80. / self._fps
print('mel_idx_multiplier:', mel_idx_multiplier)
i = 0
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
# mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
self.mel_chunks_queue_.put(mel[:, len(mel[0]) - mel_step_size:])
break
# mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size])
self.mel_chunks_queue_.put(mel[:, start_idx: start_idx + mel_step_size])
i += 1
while not self.mel_chunks_queue_.empty():
print("self.mel_chunks_queue_ len:", self.mel_chunks_queue_.qsize())
m = self.mel_chunks_queue_.get()
img_batch, mel_batch, frames, coords = datagen_signal(face_list_cycle[0], m, face_det_results)
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
f[y1:y2, x1:x2] = p
name = "%04d" % j
cv2.imwrite(f'temp/images/{j}.jpg', p)
j = j + 1
p = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
self._test_image_queue.put(p)
out.write(f)
return j
def test(self):
batch_size = 128
print('batch_size:', batch_size, ' mel_chunks len:', self.mel_chunks_queue_.qsize())
face_images_path = r'./face/'
face_images_path = utils.read_files_path(face_images_path)
face_list_cycle = read_images(face_images_path)
face_images_length = len(face_list_cycle)
logging.info(f'face images length: {face_images_length}')
print(f'face images length: {face_images_length}')
model = load_model(r'.\checkpoints\wav2lip.pth')
print("Model loaded")
frame_h, frame_w = face_list_cycle[0].shape[:-1]
out = cv2.VideoWriter('temp/resul_tttt.avi',
cv2.VideoWriter_fourcc(*'DIVX'), 25, (frame_w, frame_h))
face_det_results = face_detect(face_list_cycle)
audio_path = r'./temp/audio/chunk_0.wav'
stream = audio.load_wav(audio_path, 16000)
stream_len = stream.shape[0]
print('wav length:', stream_len)
_audio_chunk_queue = queue.Queue()
index = 0
chunk_len = 6400
while stream_len >= chunk_len:
audio_chunk = stream[index:index + chunk_len]
_audio_chunk_queue.put(audio_chunk)
stream_len -= chunk_len
index += chunk_len
if stream_len > 0:
audio_chunk = stream[index:index + stream_len]
_audio_chunk_queue.put(audio_chunk)
index += stream_len
stream_len -= stream_len
print('_audio_chunk_queue:', _audio_chunk_queue.qsize())
j = 0
while not _audio_chunk_queue.empty():
chunks = []
length = min(5, _audio_chunk_queue.qsize())
for i in range(length):
chunks.append(_audio_chunk_queue.get())
j = self.inter(model, chunks, face_list_cycle, face_det_results, out, j)
out.release()
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_path, 'temp/resul_tttt.avi',
'temp/resul_tttt.mp4')
subprocess.call(command, shell=platform.system() != 'Windows')
# gen = datagen(face_list_cycle, self.mel_chunks_queue_)
def get_fps(self):
return self._fps
def get_batch_size(self):
return self._batch_size
def get_audio_sample_rate(self):
return self._sample_rate
def get_stride_left_size(self):
return self._stride_left_size
def get_stride_right_size(self):
return self._stride_right_size
def on_destroy(self):
# self.render_event.clear()
# self._chunk_2_mal.stop()
# if self._tts is not None:
# self._tts.stop()
logging.info('human destroy')
def read(self, txt):
if self._tts is None:
logging.warning('tts is none')
return
self._tts.push_txt(txt)
def push_audio_chunk(self, audio_chunk):
self._chunk_2_mal.push_chunk(audio_chunk)
def push_mel_chunks_queue(self, mel_chunk):
self._infer.push(mel_chunk)
# self.audio_chunks_queue_.put(audio_chunk)
def push_feat_queue(self, mel_chunks):
print("push_feat_queue")
self._feat_queue.put(mel_chunks)
def push_audio_frames(self, chunk, type_):
self._output_queue.put((chunk, type_))
def push_render_image(self, image):
self._test_image_queue.put(image)
def render(self):
try:
# img, aud = self._res_frame_queue.get(block=True, timeout=.3)
img = self._test_image_queue.get(block=True, timeout=.3)
except queue.Empty:
# print('render queue.Empty:')
return None
return img
# def pull_audio_chunk(self):
# try:
# chunk = self._audio_chunk_queue.get(block=True, timeout=1.0)
# type = 1
# except queue.Empty:
# chunk = np.zeros(self._chunk, dtype=np.float32)
# type = 0
# return chunk, type