224 lines
6.8 KiB
Python
224 lines
6.8 KiB
Python
#encoding = utf8
|
|
import logging
|
|
|
|
import multiprocessing as mp
|
|
import queue
|
|
import time
|
|
|
|
import numpy as np
|
|
|
|
import utils
|
|
from models import Wav2Lip
|
|
from tts.Chunk2Mal import Chunk2Mal
|
|
import torch
|
|
import cv2
|
|
from tqdm import tqdm
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
def _load(checkpoint_path):
|
|
if device == 'cuda':
|
|
checkpoint = torch.load(checkpoint_path)
|
|
else:
|
|
checkpoint = torch.load(checkpoint_path,
|
|
map_location=lambda storage, loc: storage)
|
|
return checkpoint
|
|
|
|
|
|
def load_model(path):
|
|
model = Wav2Lip()
|
|
print("Load checkpoint from: {}".format(path))
|
|
logging.info(f'Load checkpoint from {path}')
|
|
checkpoint = _load(path)
|
|
s = checkpoint["state_dict"]
|
|
new_s = {}
|
|
for k, v in s.items():
|
|
new_s[k.replace('module.', '')] = v
|
|
model.load_state_dict(new_s)
|
|
model = model.to(device)
|
|
return model.eval()
|
|
|
|
|
|
def read_images(img_list):
|
|
frames = []
|
|
print('reading images...')
|
|
for img_path in tqdm(img_list):
|
|
print(f'read image path:{img_path}')
|
|
frame = cv2.imread(img_path)
|
|
frames.append(frame)
|
|
return frames
|
|
|
|
|
|
def __mirror_index(size, index):
|
|
# size = len(self.coord_list_cycle)
|
|
turn = index // size
|
|
res = index % size
|
|
if turn % 2 == 0:
|
|
return res
|
|
else:
|
|
return size - res - 1
|
|
|
|
|
|
# python.exe .\inference.py --checkpoint_path .\checkpoints\wav2lip.pth --face
|
|
# .\face\img00016.jpg --audio .\audio\audio1.wav
|
|
def inference(render_event, batch_size, face_images_path, audio_feat_queue, audio_out_queue, res_frame_queue):
|
|
logging.info(f'Using {device} for inference.')
|
|
print(f'Using {device} for inference.')
|
|
|
|
print(f'face_images_path: {face_images_path}')
|
|
|
|
model = load_model(r'.\checkpoints\wav2lip.pth')
|
|
face_list_cycle = read_images(face_images_path)
|
|
face_images_length = len(face_list_cycle)
|
|
logging.info(f'face images length: {face_images_length}')
|
|
print(f'face images length: {face_images_length}')
|
|
|
|
length = len(face_list_cycle)
|
|
index = 0
|
|
count = 0
|
|
count_time = 0
|
|
logging.info('start inference')
|
|
print(f'start inference: {render_event.is_set()}')
|
|
while render_event.is_set():
|
|
print('start inference')
|
|
try:
|
|
mel_batch = audio_feat_queue.get(block=True, timeout=1)
|
|
except queue.Empty:
|
|
continue
|
|
|
|
audio_frames = []
|
|
is_all_silence = True
|
|
for _ in range(batch_size * 2):
|
|
frame, type = audio_feat_queue.get() # is erro
|
|
audio_frames.append((frame, type))
|
|
|
|
if type == 0:
|
|
is_all_silence = False
|
|
|
|
print(f'is_all_silence {is_all_silence}')
|
|
if is_all_silence:
|
|
for i in range(batch_size):
|
|
res_frame_queue.put((None, __mirror_index(length, index), audio_frames[i*2:i*2+2]))
|
|
index = index + 1
|
|
else:
|
|
t = time.perf_counter()
|
|
image_batch = []
|
|
for i in range(batch_size):
|
|
idx = __mirror_index(length, index + i)
|
|
face = face_list_cycle[idx]
|
|
image_batch.append(face)
|
|
image_batch, mel_batch = np.asarray(image_batch), np.asarray(mel_batch)
|
|
|
|
image_masked = image_batch.copy()
|
|
image_masked[:, face.shape[0]//2:] = 0
|
|
|
|
image_batch = np.concatenate((image_masked, image_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
image_batch = torch.FloatTensor(np.transpose(image_batch, (0, 3, 1, 2))).to(device)
|
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
|
|
|
with torch.no_grad():
|
|
pred = model(mel_batch, image_batch)
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
|
|
|
count_time += (time.perf_counter() - t)
|
|
count += batch_size
|
|
if count >= 100:
|
|
logging.info(f"------actual avg infer fps:{count/count_time:.4f}")
|
|
count = 0
|
|
count_time = 0
|
|
|
|
for i, res_frame in enumerate(pred):
|
|
res_frame_queue.put((res_frame, __mirror_index(length, index), audio_frames[i*2 : i*2+2]))
|
|
index = index + 1
|
|
|
|
logging.info('finish inference')
|
|
|
|
|
|
class Human:
|
|
def __init__(self):
|
|
self._tts = None
|
|
self._fps = 50 # 20 ms per frame
|
|
self._batch_size = 16
|
|
self._sample_rate = 16000
|
|
self._chunk = self._sample_rate // self._fps # 320 samples per chunk (20ms * 16000 / 1000)
|
|
self._chunk_2_mal = Chunk2Mal(self)
|
|
self._stride_left_size = 10
|
|
self._stride_right_size = 10
|
|
self._feat_queue = mp.Queue(2)
|
|
self._output_queue = mp.Queue()
|
|
self._res_frame_queue = mp.Queue(self._batch_size * 2)
|
|
|
|
face_images_path = r'./face/'
|
|
self._face_image_paths = utils.read_files_path(face_images_path)
|
|
print(self._face_image_paths)
|
|
self.render_event = mp.Event()
|
|
mp.Process(target=inference, args=(self.render_event, self._batch_size, self._face_image_paths,
|
|
self._feat_queue, self._output_queue, self._res_frame_queue,
|
|
)).start()
|
|
self.render_event.set()
|
|
|
|
def get_fps(self):
|
|
return self._fps
|
|
|
|
def get_batch_size(self):
|
|
return self._batch_size
|
|
|
|
def get_chunk(self):
|
|
return self._chunk
|
|
|
|
def get_stride_left_size(self):
|
|
return self._stride_left_size
|
|
|
|
def get_stride_right_size(self):
|
|
return self._stride_right_size
|
|
|
|
def on_destroy(self):
|
|
self.render_event.clear()
|
|
self._chunk_2_mal.stop()
|
|
if self._tts is not None:
|
|
self._tts.stop()
|
|
logging.info('human destroy')
|
|
|
|
def set_tts(self, tts):
|
|
if self._tts == tts:
|
|
return
|
|
|
|
self._tts = tts
|
|
self._tts.start()
|
|
self._chunk_2_mal.start()
|
|
|
|
def read(self, txt):
|
|
if self._tts is None:
|
|
logging.warning('tts is none')
|
|
return
|
|
|
|
self._tts.push_txt(txt)
|
|
|
|
def push_audio_chunk(self, chunk):
|
|
self._chunk_2_mal.push_chunk(chunk)
|
|
|
|
def push_feat_queue(self, mel_chunks):
|
|
print("21")
|
|
self._feat_queue.put(mel_chunks)
|
|
print("22")
|
|
|
|
def render(self):
|
|
try:
|
|
img, aud = self._res_frame_queue.get(block=True, timeout=.3)
|
|
except queue.Empty:
|
|
print('queue.Empty:')
|
|
return None
|
|
return img
|
|
|
|
# def pull_audio_chunk(self):
|
|
# try:
|
|
# chunk = self._audio_chunk_queue.get(block=True, timeout=1.0)
|
|
# type = 1
|
|
# except queue.Empty:
|
|
# chunk = np.zeros(self._chunk, dtype=np.float32)
|
|
# type = 0
|
|
# return chunk, type
|