435 lines
16 KiB
Python
435 lines
16 KiB
Python
#encoding = utf8
|
|
import os
|
|
import glob
|
|
import queue
|
|
import multiprocessing as mp
|
|
import time
|
|
from queue import Queue
|
|
from threading import Thread, Event
|
|
import logging
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
import face_detection
|
|
import utils
|
|
from models import Wav2Lip
|
|
from utils import mirror_index
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
def read_images(img_list):
|
|
frames = []
|
|
print('reading images...')
|
|
for img_path in tqdm(img_list):
|
|
print(f'read image path:{img_path}')
|
|
frame = cv2.imread(img_path)
|
|
frames.append(frame)
|
|
return frames
|
|
|
|
|
|
def _load(checkpoint_path):
|
|
if device == 'cuda':
|
|
checkpoint = torch.load(checkpoint_path)
|
|
else:
|
|
checkpoint = torch.load(checkpoint_path,
|
|
map_location=lambda storage, loc: storage)
|
|
return checkpoint
|
|
|
|
|
|
def load_model(path):
|
|
model = Wav2Lip()
|
|
print("Load checkpoint from: {}".format(path))
|
|
logging.info(f'Load checkpoint from {path}')
|
|
checkpoint = _load(path)
|
|
s = checkpoint["state_dict"]
|
|
new_s = {}
|
|
for k, v in s.items():
|
|
new_s[k.replace('module.', '')] = v
|
|
model.load_state_dict(new_s)
|
|
model = model.to(device)
|
|
return model.eval()
|
|
|
|
|
|
def get_smoothened_boxes(boxes, T):
|
|
for i in range(len(boxes)):
|
|
if i + T > len(boxes):
|
|
window = boxes[len(boxes) - T:]
|
|
else:
|
|
window = boxes[i : i + T]
|
|
boxes[i] = np.mean(window, axis=0)
|
|
return boxes
|
|
|
|
|
|
def face_detect(images):
|
|
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
|
flip_input=False, device=device)
|
|
batch_size = 16
|
|
|
|
while 1:
|
|
predictions = []
|
|
try:
|
|
for i in range(0, len(images), batch_size):
|
|
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
|
except RuntimeError:
|
|
if batch_size == 1:
|
|
raise RuntimeError(
|
|
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
|
|
batch_size //= 2
|
|
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
|
|
continue
|
|
break
|
|
|
|
results = []
|
|
pady1, pady2, padx1, padx2 = [0, 10, 0, 0]
|
|
for rect, image in zip(predictions, images):
|
|
if rect is None:
|
|
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
|
|
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
|
|
|
|
y1 = max(0, rect[1] - pady1)
|
|
y2 = min(image.shape[0], rect[3] + pady2)
|
|
x1 = max(0, rect[0] - padx1)
|
|
x2 = min(image.shape[1], rect[2] + padx2)
|
|
|
|
results.append([x1, y1, x2, y2])
|
|
|
|
boxes = np.array(results)
|
|
boxes = get_smoothened_boxes(boxes, T=5)
|
|
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
|
|
|
del detector
|
|
return results
|
|
|
|
|
|
img_size = 96
|
|
wav2lip_batch_size = 128
|
|
|
|
|
|
def datagen(frames, mels):
|
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
|
|
|
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
|
|
|
|
i = 0
|
|
for m in enumerate(mels):
|
|
# for i in range(mels.qsize()):
|
|
idx = 0 if True else i%len(frames)
|
|
frame_to_save = frames[mirror_index(1, i)].copy()
|
|
face, coords = face_det_results[idx].copy()
|
|
|
|
face = cv2.resize(face, (img_size, img_size))
|
|
|
|
img_batch.append(face)
|
|
mel_batch.append(m)
|
|
frame_batch.append(frame_to_save)
|
|
coords_batch.append(coords)
|
|
|
|
if len(img_batch) >= wav2lip_batch_size:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, img_size//2:] = 0
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
|
i = i + 1
|
|
|
|
if len(img_batch) > 0:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, img_size//2:] = 0
|
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
|
|
|
|
|
def datagen_signal(frame, mel, face_det_results):
|
|
img_batch, mel_batch, frame_batch, coord_batch = [], [], [], []
|
|
|
|
# for i, m in enumerate(mels):
|
|
idx = 0
|
|
frame_to_save = frame.copy()
|
|
face, coord = face_det_results[idx].copy()
|
|
|
|
face = cv2.resize(face, (img_size, img_size))
|
|
|
|
for i, m in enumerate(mel):
|
|
img_batch.append(face)
|
|
mel_batch.append(m)
|
|
frame_batch.append(frame_to_save)
|
|
coord_batch.append(coord)
|
|
|
|
if len(img_batch) >= wav2lip_batch_size:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, img_size // 2:] = 0
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
return img_batch, mel_batch, frame_batch, coord_batch
|
|
|
|
if len(img_batch) > 0:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, img_size // 2:] = 0
|
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
return img_batch, mel_batch, frame_batch, coord_batch
|
|
|
|
|
|
def inference(render_event, batch_size, face_imgs_path, audio_feat_queue, audio_out_queue, res_frame_queue):
|
|
model = load_model(r'.\checkpoints\wav2lip.pth')
|
|
# face_list_cycle = read_images(face_imgs_path)
|
|
input_face_list = glob.glob(os.path.join(face_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
|
input_face_list = sorted(input_face_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
|
face_list_cycle = read_images(input_face_list)
|
|
|
|
# input_latent_list_cycle = torch.load(latents_out_path)
|
|
length = len(face_list_cycle)
|
|
index = 0
|
|
count = 0
|
|
counttime = 0
|
|
print('start inference')
|
|
while True:
|
|
if render_event.is_set():
|
|
starttime = time.perf_counter()
|
|
mel_batch = []
|
|
try:
|
|
mel_batch = audio_feat_queue.get(block=True, timeout=1)
|
|
except queue.Empty:
|
|
continue
|
|
|
|
is_all_silence = True
|
|
audio_frames = []
|
|
for _ in range(batch_size * 2):
|
|
frame, type_ = audio_out_queue.get()
|
|
audio_frames.append((frame, type_))
|
|
if type_ == 0:
|
|
is_all_silence = False
|
|
|
|
if is_all_silence:
|
|
for i in range(batch_size):
|
|
res_frame_queue.put((None, mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
|
|
index = index + 1
|
|
else:
|
|
print('infer=======')
|
|
t = time.perf_counter()
|
|
img_batch = []
|
|
for i in range(batch_size):
|
|
idx = mirror_index(length, index + i)
|
|
face = face_list_cycle[idx]
|
|
img_batch.append(face)
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, face.shape[0] // 2:] = 0
|
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
|
|
|
with torch.no_grad():
|
|
pred = model(mel_batch, img_batch)
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
|
|
|
counttime += (time.perf_counter() - t)
|
|
count += batch_size
|
|
# _totalframe += 1
|
|
if count >= 100:
|
|
print(f"------actual avg infer fps:{count / counttime:.4f}")
|
|
count = 0
|
|
counttime = 0
|
|
for i, res_frame in enumerate(pred):
|
|
# self.__pushmedia(res_frame,loop,audio_track,video_track)
|
|
res_frame_queue.put((res_frame, mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
|
|
index = index + 1
|
|
# print('total batch time:',time.perf_counter()-starttime)
|
|
else:
|
|
time.sleep(1)
|
|
print('musereal inference processor stop')
|
|
|
|
class Infer:
|
|
def __init__(self, human):
|
|
self._human = human
|
|
self._feat_queue = Queue()
|
|
self._audio_out_queue = Queue()
|
|
|
|
self.batch_size = human.get_batch_size()
|
|
# self.asr = human.chunk_2_mal
|
|
# self.res_frame_queue = human.res_render_queue
|
|
|
|
# face_images_path = r'./face/'
|
|
# self.face_images_path = utils.read_files_path(face_images_path)
|
|
self.avatar_id = 'wav2lip_avatar1'
|
|
self.avatar_path = f"./data/{self.avatar_id}"
|
|
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
|
|
self.face_images_path = f"{self.avatar_path}/face_imgs"
|
|
self.coords_path = f"{self.avatar_path}/coords.pkl"
|
|
# self.render_event = mp.Event()
|
|
# mp.Process(target=inference, args=(self.render_event, self.batch_size, self.face_images_path,
|
|
# self.asr.feat_queue, self.asr.output_queue, self.res_frame_queue,
|
|
# )).start()
|
|
# self.render_event.set()
|
|
|
|
self._exit_event = Event()
|
|
self._run_thread = Thread(target=self.__on_run)
|
|
self._exit_event.set()
|
|
self._run_thread.start()
|
|
|
|
def __on_run(self):
|
|
model = load_model(r'.\checkpoints\wav2lip.pth')
|
|
print("Model loaded")
|
|
|
|
face_list_cycle = self._human.get_face_list_cycle()
|
|
# input_face_list = glob.glob(os.path.join(self.face_images_path, '*.[jpJP][pnPN]*[gG]'))
|
|
# input_face_list = sorted(input_face_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
|
# face_list_cycle = read_images(input_face_list)
|
|
|
|
# self.__do_run1(face_list_cycle, model)
|
|
self.__do_run2(face_list_cycle, model)
|
|
|
|
# frame_h, frame_w = face_list_cycle[0].shape[:-1]
|
|
|
|
def __do_run1(self, face_list_cycle, model):
|
|
face_det_results = face_detect(face_list_cycle)
|
|
|
|
j = 0
|
|
|
|
count = 0
|
|
while self._exit_event.is_set():
|
|
try:
|
|
m = self._feat_queue.get(block=True, timeout=1)
|
|
except queue.Empty:
|
|
continue
|
|
|
|
img_batch, mel_batch, frames, coords = datagen_signal(face_list_cycle[0], m, face_det_results)
|
|
|
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
|
|
|
time.sleep(0.01)
|
|
|
|
with torch.no_grad():
|
|
pred = model(mel_batch, img_batch)
|
|
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
|
for p, f, c in zip(pred, frames, coords):
|
|
y1, y2, x1, x2 = c
|
|
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
|
|
|
|
f[y1:y2, x1:x2] = p
|
|
# name = "%04d" % j
|
|
cv2.imwrite(f'temp/images/{j}.jpg', p)
|
|
j = j + 1
|
|
# count = count + 1
|
|
p = cv2.cvtColor(f, cv2.COLOR_BGR2RGB)
|
|
self._human.push_render_image(p)
|
|
# out.write(f)
|
|
# print('infer count:', count)
|
|
|
|
def __do_run2(self, face_list_cycle, model):
|
|
length = len(face_list_cycle)
|
|
index = 0
|
|
count = 0
|
|
count_time = 0
|
|
print('start inference')
|
|
#
|
|
# face_images_path = r'./face/'
|
|
# face_images_path = utils.read_files_path(face_images_path)
|
|
# face_list_cycle1 = read_images(face_images_path)
|
|
# face_det_results = face_detect(face_list_cycle1)
|
|
|
|
while True:
|
|
if self._exit_event.is_set():
|
|
start_time = time.perf_counter()
|
|
batch_size = self._human.get_batch_size()
|
|
try:
|
|
mel_batch = self._feat_queue.get(block=True, timeout=1)
|
|
except queue.Empty:
|
|
continue
|
|
|
|
is_all_silence = True
|
|
audio_frames = []
|
|
for _ in range(batch_size * 2):
|
|
frame, type_ = self._audio_out_queue.get()
|
|
audio_frames.append((frame, type_))
|
|
if type_ == 0:
|
|
is_all_silence = False
|
|
|
|
if is_all_silence:
|
|
for i in range(batch_size):
|
|
# res_frame_queue.put((None, mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
|
|
self._human.push_res_frame(None, mirror_index(length, index), audio_frames[i * 2:i * 2 + 2])
|
|
index = index + 1
|
|
else:
|
|
print('infer=======')
|
|
t = time.perf_counter()
|
|
img_batch = []
|
|
for i in range(batch_size):
|
|
idx = mirror_index(length, index + i)
|
|
face = face_list_cycle[idx]
|
|
img_batch.append(face)
|
|
|
|
# img_batch_1, mel_batch_1, frames, coords = datagen_signal(face_list_cycle1,
|
|
# mel_batch, face_det_results)
|
|
|
|
img_batch = np.asarray(img_batch)
|
|
mel_batch = np.asarray(mel_batch)
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, face.shape[0] // 2:] = 0
|
|
#
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
|
mel_batch = np.reshape(mel_batch,
|
|
[len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
|
|
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
|
|
|
with torch.no_grad():
|
|
pred = model(mel_batch, img_batch)
|
|
# pred = model(mel_batch, img_batch) * 255.0
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
|
|
|
count_time += (time.perf_counter() - t)
|
|
count += batch_size
|
|
# _totalframe += 1
|
|
if count >= 100:
|
|
print(f"------actual avg infer fps:{count / count_time:.4f}")
|
|
count = 0
|
|
count_time = 0
|
|
for i, res_frame in enumerate(pred):
|
|
# self.__pushmedia(res_frame,loop,audio_track,video_track)
|
|
# res_frame_queue.put(
|
|
# (res_frame, __mirror_index(length, index), audio_frames[i * 2:i * 2 + 2]))
|
|
self._human.push_res_frame(res_frame, mirror_index(length, index),
|
|
audio_frames[i * 2:i * 2 + 2])
|
|
index = index + 1
|
|
# print('total batch time:',time.perf_counter()-start_time)
|
|
else:
|
|
time.sleep(1)
|
|
print('musereal inference processor stop')
|
|
|
|
def push(self, mel_chunks):
|
|
self._feat_queue.put(mel_chunks)
|
|
|
|
def push_out_queue(self, frame, type_):
|
|
self._audio_out_queue.put((frame, type_))
|
|
|
|
def get_out_put(self):
|
|
return self._audio_out_queue.get()
|