human/utils/utils.py
2024-12-03 00:14:00 +08:00

313 lines
9.9 KiB
Python

#encoding = utf8
import copy
import glob
import logging
import os
import pickle
import cv2
import numpy as np
import torch
from tqdm import tqdm
from PIL import Image
import face_detection
from models import Wav2Lip, Wav2LipV2
logger = logging.getLogger(__name__)
def mirror_index(size, index):
# size = len(self.coord_list_cycle)
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1
def read_image(path):
image = Image.open(path)
return image
def read_images(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
# frame = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
frame = Image.open(img_path)
frame = np.array(frame)
frames.append(frame)
return frames
def read_files_path(path):
file_paths = []
files = os.listdir(path)
for file in files:
if not os.path.isdir(file) and file.endswith('.png') or file.endswith('.jpg'):
file_paths.append(os.path.join(path, file))
return file_paths
def get_smoothened_boxes(boxes, t):
for i in range(len(boxes)):
if i + t > len(boxes):
window = boxes[len(boxes) - t:]
else:
window = boxes[i: i + t]
boxes[i] = np.mean(window, axis=0)
return boxes
def datagen_signal(frame, mel, face_det_results, img_size, wav2lip_batch_size=128):
img_batch, mel_batch, frame_batch, coord_batch = [], [], [], []
idx = 0
frame_to_save = frame.copy()
face, coord = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
for i, m in enumerate(mel):
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coord_batch.append(coord)
if len(img_batch) >= wav2lip_batch_size:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size // 2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
return img_batch, mel_batch, frame_batch, coord_batch
if len(img_batch) > 0:
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
img_masked = img_batch.copy()
img_masked[:, img_size//2:] = 0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
return img_batch, mel_batch, frame_batch, coord_batch
def face_detect(images, device):
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
flip_input=False, device=device)
batch_size = 16
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError(
'Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
pad_y1, pad_y2, pad_x1, pad_x2 = [0, 10, 0, 0]
for rect, image in zip(predictions, images):
if rect is None:
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
y1 = max(0, rect[1] - pad_y1)
y2 = min(image.shape[0], rect[3] + pad_y2)
x1 = max(0, rect[0] - pad_x1)
x2 = min(image.shape[1], rect[2] + pad_x2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not False:
boxes = get_smoothened_boxes(boxes, t=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
del detector
return results
def get_device():
return 'cuda' if torch.cuda.is_available() else 'cpu'
def _load(checkpoint_path):
device = get_device()
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_model(path):
model = Wav2LipV2()
print("Load checkpoint from: {}".format(path))
logging.info(f'Load checkpoint from {path}')
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
device = get_device()
model = model.to(device)
return model.eval()
def load_avatar(path, img_size, device):
print(f'load avatar:{path}')
face_images_path = os.path.join(path, 'face')
face_images_path = read_files_path(face_images_path)
full_list_cycle = read_images(face_images_path)
face_det_results = face_detect(full_list_cycle, device)
face_frames = []
coord_frames = []
for face, coord in face_det_results:
resized_crop_frame = cv2.resize(face[:, :, :3], (img_size, img_size))
face_frames.append(resized_crop_frame)
coord_frames.append(coord)
return full_list_cycle, face_frames, coord_frames
def load_avatar_from_processed(base_path, avatar_name):
avatar_path = os.path.join(base_path, 'data', 'avatars', avatar_name)
print(f'load avatar from processed:{avatar_path}')
coord_path = os.path.join(avatar_path, 'coords.pkl')
print(f'load avatar_path from processed:{avatar_path}')
face_image_path = os.path.join(avatar_path, 'face_imgs')
print(f'load face_image_path from processed:{face_image_path}')
full_image_path = os.path.join(avatar_path, 'full_imgs')
print(f'load full_image_path from processed:{full_image_path}')
with open(coord_path, 'rb') as f:
coord_list_frames = pickle.load(f)
face_image_list = glob.glob(os.path.join(face_image_path, '*.[jpJP][pnPN]*[gG]'))
face_image_list = sorted(face_image_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
face_list_cycle = read_images(face_image_list)
full_image_list = glob.glob(os.path.join(full_image_path, '*.[jpJP][pnPN]*[gG]'))
full_image_list = sorted(full_image_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
frame_list_cycle = read_images(full_image_list)
return frame_list_cycle, face_list_cycle, coord_list_frames
def jpeg_to_png(image):
min_green = np.array([50, 100, 100])
max_green = np.array([70, 255, 255])
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
mask = cv2.inRange(hsv, min_green, max_green)
mask_not = cv2.bitwise_not(mask)
green_not = cv2.bitwise_and(image, image, mask=mask_not)
b, g, r = cv2.split(green_not)
# todo 合成四通道
image = cv2.merge([b, g, r, mask_not])
return image
def load_avatar_from_256_processed(base_path, avatar_name, pkl):
avatar_path = os.path.join(base_path, 'data', 'avatars', avatar_name, pkl)
print(f'load avatar from processed:{avatar_path}')
with open(avatar_path, "rb") as f:
avatar_data = pickle.load(f)
face_list_cycle = []
frame_list_cycle = []
coord_list_frames = []
align_frames = []
m_frames = []
inv_m_frames = []
frame_info_list = avatar_data['frame_info_list']
for frame_info in tqdm(frame_info_list):
face_list_cycle.append(frame_info['img'])
frame_list_cycle.append(jpeg_to_png(frame_info['frame']))
coord_list_frames.append(frame_info['coords'])
align_frames.append(frame_info['align_frame'])
m_frames.append(frame_info['m'])
inv_m_frames.append(frame_info['inv_m'])
return frame_list_cycle, face_list_cycle, coord_list_frames, align_frames, m_frames, inv_m_frames
def config_logging(file_name: str, console_level: int = logging.INFO, file_level: int = logging.DEBUG):
file_handler = logging.FileHandler(file_name, mode='a', encoding="utf8")
file_handler.setFormatter(logging.Formatter(
'%(asctime)s [%(levelname)s] %(module)s.%(lineno)d %(name)s:\t%(message)s'
))
file_handler.setLevel(file_level)
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter(
'[%(asctime)s.%(msecs)03d %(levelname)s] %(message)s',
datefmt="%Y/%m/%d %H:%M:%S"
))
console_handler.setLevel(console_level)
logging.basicConfig(
level=min(console_level, file_level),
handlers=[file_handler, console_handler],
)
def object_stop(obj):
if obj is not None:
obj.stop()
def img_warp_back_inv_m(img, img_to, inv_m):
h_up, w_up, c = img_to.shape
mask = np.ones_like(img).astype(np.float32)
inv_mask = cv2.warpAffine(mask, inv_m, (w_up, h_up))
inv_img = cv2.warpAffine(img, inv_m, (w_up, h_up))
mask_indices = inv_mask == 1
if 4 == c:
img_to[:, :, :3][mask_indices] = inv_img[mask_indices]
else:
img_to[inv_mask == 1] = inv_img[inv_mask == 1]
return img_to
def render_image(context, frame):
res_frame, idx, type_ = frame
if type_ == 0:
combine_frame = context.frame_list_cycle[idx]
else:
bbox = context.coord_list_cycle[idx]
combine_frame = copy.deepcopy(context.frame_list_cycle[idx])
af = context.align_frames[idx]
inv_m = context.inv_m_frames[idx]
y1, y2, x1, x2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1))
af[y1:y2, x1:x2] = res_frame
combine_frame = img_warp_back_inv_m(af, combine_frame, inv_m)
except Exception as e:
logging.error(f'resize error:{e}')
return None
return combine_frame